Search for the 17 MeV particle with the PADME detector

Paolo Valente on behalf of the PADME Collaboration

X17 "anomalies"

Several anomalies in angular correlations of e+ e- internally converted in the radiative disexcitation of nuclear levels excited by a proton beam observed at ATOMKI, first in the decays of ⁸Be*, then also ⁴He*, ¹²C* [and even in the Giant-Dipole Resonace]

Interpreted with a **new particle** of mass:

⁸Be: $M_x = (16.70 \pm 0.35_{stat} \pm 0.5_{syst}) \text{ MeV}$ ⁴He: $M_x = (16.94 \pm 0.12_{stat} \pm 0.21_{syst}) \text{ MeV}$ ¹²C: $M_x = (17.03 \pm 0.11_{stat} \pm 0.20_{syst}) \text{ MeV}$

of mass M_x in a $N^* \rightarrow N X_{17}$ transition

Observed also at HUS (Vietnam) in the ⁸Be* with a different setup [Universe 2024, 10(4)]

[PRL 116 (2016) 042501]

[PR C 104 (2021) 044003] [PR C 106, L061601 (2022)]

 $\theta_{\min} \sim asin(\frac{M_X}{M_{N_H}-M_N}); M_X = (16.85 \pm 0.04) \text{ MeV}; \chi^2 = 17.3, \text{ ndf} = 10, P(\chi^2) = 7\%$ The rate measurements indicate $\Gamma(N^* \rightarrow N X_{17}) / \Gamma(N^* \rightarrow N g) \sim 5 \times 10^{-6}$

Angular excesses approx. consistent with being due to a particle

[PRD108, 015009 (2023)]:

Ongoing experimental initiatives Recent result from MEG II arXiv:2411.07994

Measurement on ⁷Li target to reproduce ⁸Be ATOMKI result, <u>no signal found</u> ULs on $\Gamma(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be } X(\text{ee})) / \Gamma(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be } \gamma)$ for 17.6, 18.1 MeV transitions

```
MEG-II result still compatible at 1.5 \sigma with the ATOMKI combination i.e. M<sub>X</sub> = 16.85(4) MeV JHEP 04 (2025) 035
```

Further iniatives:

- AN2000 electrostatic accelerator at INFN LNL [In data taking]
- At n_TOF EAR2 neutron line at CERN [2025 proposal]
- Tandem accelerator in Montreal [JPC Ser. 2391 (2022) 012008]
- Van de Graaf accelerator at IEAP Prague [NIM A 1047 (2023) 167858]

Search for a resonance on a thin target

$$\sigma_{res} \propto \frac{g_{V_e}^2}{2m_e} \pi Z \, \delta(E_{res} - E_{beam})$$

- σ goes with $\alpha_{em} \rightarrow dominant process$ wrt other pair production processes ($\alpha_{em}^2, \alpha_{em}^3$)
- $\sqrt{s}\,$ as close as possible to expected mass

 \rightarrow expected **enhancement** in \sqrt{s} over the SM background

Fine scan the e⁺ beam energy around the resonance [E_{e+}~283 MeV]
 → measure two-body final state yield N₂ for each energy point

N₂(s) = N_{POT}(s) × B(s) if only "background", i.e. SM contribution

to be compared with:

 $N_2(s) = N_{POT}(s) \times [B(s) + S(s; M_X, g) \times \epsilon_S(s)]$

- S(s; M_x, g) signal per POT for given {mass, coupling} = {M_x, g}
- ε_s(s) signal acceptance and selection efficiency

Search for a resonance on a thin target

- If **X17** decays to e+e- pairs, it should also be produced in **e+e- annihilations**
- The basics of a resonance search are discussed in PRD 106 (2022) 115036
- Focus on a **Vector state interpretation** for brevity:

 $\mathcal{L}^{\text{Vect.}} \supset \sum_{f=e,u,d} X^{\mu}_{17} \bar{f} \gamma_{\mu} (g_{vf} + \gamma^5 \tilde{g}_{vf}) f.$

- The resonance is much narrower wrt the **momentum spread** of the positron **beam**
- Not negligible broadening due to the electron binding energy

2022 setup

Run I and II dedicated to dark photon searches with associated production

In 2022 PADME setup specifically adapted for Run-III:

- Active target: polycrystalline diamond [0.1 mm thick]
- No magnetic field [PADME dipole off]
- Calorimeter: 616 BGO crystals, 21x21x230 mm³ each
- New scintillating bar hodoscope in front of calorimeter for elγ
- Timepix silicon detector array for beam spot monitoring
- Lead-glass beam catcher (OPAL/NA62 LAV)

Run III data set

Actually two interleaved scans, 1.5 MeV step

Nearby energy points acquired 1.5 months apart

Signal selection

- Selection algorithm as independent as possible on the beam variations:
- Retune beam center run by run with an error << mm
- Overall, make marginal use of the cluster reconstructed energy

Selected events 4% background

Analysis scheme

Rewrite the yield formula as:

$$\frac{N_2(s)}{N_{POT}(s) B(s)} = 1 + \frac{S(s; MX, g) \varepsilon_S(s)}{B(s)}$$

R(s)

R(s)=1 if only SM **"background"**, but different effects can lead to a **deviation** from above: **K(s)**

Question: is R(s) more consistent with

• K(s) or

• K(s) ×
$$\left[1 + \frac{S(s; MX, g) \epsilon_{S}(s)}{B(s)}\right]$$
?

MC with $M_X = 16.8 \text{ MeV}$, $g_V = 8 \times 10^{-4}$

Error budget: N₂, **B**

Source	Error on N ₂ [%]	
Statistics	~0.6	30k events /energy point
Background subtraction	0.3	using angular side-bands (Bremsstrahlung, 4%)
Total	0.65	

Source	Error on B [%]	Monte Carlo + data-driven checks	in the scale K(s), e.g.: Absolute cross section (rad. corr. at 3%)			
MC statistics	0.40		+ data-driven target thickness (known 4%)			
Data/MC efficiency	0.35		Source	Correlated B error [%]		
(Tag&Probe)			Below res. statistics	0.40		
Cut stability	0.04		Below res.	1.80		
Beam spot variations	0.05		acceptance; s slope			
Total	0.54		Total	1.85		
		4		SERVIPHYSICAL SOCIETICS		

Common systematic errors on **B** enter

Error budget: N_{POT}

Source	Error on N _{POT} [%]	
Statistics, ped subtraction	negligible	
Energy scale from BES	0.3	BES from Timepix beam spot σ_{x}
Error from rad. induce slope	Variable, ~0.35	
Total	0.45	

Source	Common error on N _{POT} [%]	
pC / MeV	2.0	[<i>JHEP</i> 08 (2024) 121]
Energy loss, data/MC	0.5	
Rad. induced loss, constant term	0.3	
Total	2.1	

Analysis scheme: S

Analysis compares R(s) to $K(s) \times [1 + S(s; M,g_v) \epsilon/B]$

Expected signal **yield** from points taken from **PRL 132 (2024) 261801**, including effect of **motion of the atomic electrons** in the diamond target from Compton profiles

- Parameterized **S vs E_{beam}** with a **Voigt function**:
- Convolution of the Gaussian BES with the Lorentzian
- OK in the core within % with some dependence on BES
- Uncertainty in the curve parameters as nuisances:
- Peak yield: 1.3%
- Lorentzian width around resonance energy: 1.72(4) MeV
- Relative BES: 0.025(5)%

Analysis scheme: ε/B

Analysis compares R(s) to $K(s) \times [1 + S(s; M,g_v) \epsilon/B]$

Efficiency ε determined from MC: large cancellation of systematic errors using ε/B

Fit **ɛ/B(s^{1/2})** with a **straight line**, include **fit parameters as nuisances**

- Separate fits for scan 1 and scan 2, mutually compatible
- Reproduced with MC

Possible scale effects, K(s)

Radiative corrections evaluated using **Babayaga**, ee(γ) and $\gamma\gamma(\gamma)$

The scaling with the below resonance is affected by a -1.5(1.5)% shift because of radiative corrections, but the expected total error covers for it: $1.8\%(B) + 2.1\%(N_{PoT}) = 2.8\%$

Insertion of Babayaga-generated events in the MC (up to 10 γ 's) \rightarrow no effect on ϵ

Analysis scheme: expected sensitivity

- Evaluate expected 90% CL upper limit in absence of signal
- Define Q statistic based on likelihood ratio: $Q = L_{S+B}(g_v, M_X) / L_B$
- The likelihood includes terms for each nuisance parameter pdf
- For a given M_X , CLs = P_s / (1 P_B) is used to define the UL on g_v

Probabilities P_s and P_B obtained using **simulations**, where the observables are always sampled, with **nuisance parameters** fixed to the B and S+B fits

In presence of a **signal**, the expected limit is weaker, e.g. for $M_X = 16.9 \text{ MeV}$, $g_{ve} = 5 \times 10^{-4}$

15

For details: arXiv:2503.05650 [accepted by JHEP]

The "blind unblinding" procedure

To validate the error estimate applied procedure described in 2503.05650 [hep-ex]

Define a **side-band** in R(s), **excluding 10 energy points** of the scan in a **blind way**

Masked periods defined by optimizing the probability of a linear fit in \sqrt{s}

- 1. Threshold on the χ^2 fit in side-band is $P(\chi^2) = 20\%$, corresponding to reject 10% of the times
- 2. If passed, check if the **fit pulls** are **Gaussian**
- 3. If passed, check if a straight-line fit of the pulls has **no slope in s**^{1/2} (within 2 sigma)
- 4. If passed, check if constant term and slope of the linear fit for K(s) are within two sigma of the expectations, i.e.: +/- 4.8% for the constant, (-0.6 +/- 1.2) % MeV⁻¹ for the slope

Successfully applied:

- 1. $P(\chi^2) = 74\%$
- 2. Pulls Gaussian fit probability 60%
- 3. Slope of pulls consistent with zero
- 4. Constant term = 1.0116(16), Slope = (-0.010 +- 0.005) MeV⁻¹

At 90%CL additional errors <1% Proceed to box opening

Box opening

Excess is observed **beyond** the 2σ coverage (2.5 σ local)

At $M_x = 16.90(2)$ MeV, $g_{ve} = 5.6 \times 10^{-4}$, the global probability dip reaches $3.9_{-1.1}^{+1.5}$ %

Corresponding to (1.77 \pm 0.15) σ one-sided (look-elsewhere calculated exactly from the toy pseudo-events)

A second excess is present at ~ 17.1 MeV, but the absolute probability there is ~ 40%

If a 3σ interval is assumed for observation following the estimate $M_x = 16.85(4)$ of PRD 108, 015009 (2023), the p-value dip deepens to $2.2_{-0.8}^{+1.2}$ % corresponding to (2.0±0.2) σ one-sided

17

For details: ArXiv:2505.24797 [hep-ex]

Box opening

Check the data distribution vs likelihood fit

to evaluate $Q_{obs}(S+B)$

Fit probability is 60%

Box opening

For comparison, check **expected UL bands bkg-only** vs **B+S(16.9 MeV, 5 × 10**⁻⁴)

M_x (MeV)

18

18.5

16

16.5

17

17.5

PADME Run IV optimized setup

New data set being acquired to better clarify:

• set the target closer to the calorimeter, increase acceptance

Run IV – new tracking detector

New detector for Run IV [Frascati, Napoli, Roma]:

- ATLAS micromegas-based tracker to separately measure the absolute cross sections of ee/γγ
- Improvement in angle resolution, also provides beam spot

Two 5 cm gaps, can operate in TPC mode

Resistive circuit (common, 3 HV zones)

Run IV assumptions

Improvements wrt Run III:

- Increase acceptance: allow even safer treatment for edge effects
- Increase **monitoring** power and **redundancy**: better stability
- Alternative flux determinations: $\gamma\gamma$, new end of line monitor, target, chamber
- Increase statistics: 1.5×10¹⁰ POT per energy point

Expectations for Run IV:

- ×2 acceptance increase
- ×2 statistics increase
- 2.5 days for data collection, 3000 e⁺/spill as in Run III
- Points divided into 2 scans as in Run III

Source	Unc	ertainty [%]	Note	
	Run III	Run IV		
N ₂	0.6	0.3	Uncorrelated	
N _{PoT}	0.35	0.3	Uncorrelated	
В	0.55	0.3	Uncorrelated	
Total on g _R	0.89	0.5	Uncorrelated	

Conclusions

The "X₁₇" excess remains not confirmed but not disproved No SM explanation viable The PADME experiment is in a favorable condition to clarify

Data from 4×10¹¹ e⁺ on target used for resonance search in the mass region 16.4 –17.4 MeV with a blind analysis

Overall uncertainties of 0.9% on 40+ points have been obtained

No indication of X_{17} with global p-values well beyond 2σ

An excess at 16.90 MeV: local p-value 2.5 σ , global 1.77(15) σ A new data taking with an upgraded detector is ongoing: Jun-Nov 2025, possible extension beginning of 2026

Additional material

Run-III concepts – the signal selection

Select any two-body final state (ee, $\gamma\gamma$) with both daughters in ECal acceptance:

- 1. Fix R_{Max} at Ecal, away from Ecal edges
- 2. Given s, derive R_{Min}, E_{Min}, E_{Max}
- 3. Select cluster pairs:
 - With Energy > $E_{min} \times 0.4$
 - In time within 5 ns
 - Clus1: In (R_{min} D, R_{max}), D = 1.5 L3 crystals
 - Clus2: R > R_{min}- D
- 4. Select pairs back-to-back in the c.m. frame

Rmax chosen to be away from Ecal edges by more than the size of 1 BGO crystal cell for any period in the data set

1 □ = 1 BGO crystal = 21.5 x 21.5 mm

Details on expected background: s dependence

Expected background B determined from MC, stat error per period: $\delta B \sim 4 \times 10^{-3}$ Fit of B(s^{1/2}) with a straight line (only including statistical errors here)

Fit mode	P0 [10 ⁻⁶]	P1 [10 ⁻⁷ / MeV]	Corr	Fit prob
Only scan1	3.549(3)	3.71(10)	0.12	75%
Only scan2	3.567(4)	3.96(13)	-0.19	31%
All periods	3.558(2)	3.85(8)	-0.008	9%

Background curve slightly depend on the scan

Considered in alternative analysis (see later)

Box opening – III Other checks

Checked other sensitivity methods

Perform the automatic procedure but fit with a constant:

Re	sult:	Ori	ginal version:
1.	$P(\chi^2) = 37\%$	1.	$P(\chi^2) = 74\%$
2.	Pulls gaussian fit prob > 30%	2.	Pulls gaussian fit probability > 45%
3.	Slope of pulls consistent with zero	3.	Slope of pulls consistent with zero
4.	Constant = 1.0112(14)	4.	Constant = 1.0116(16), Slope = (-0.010 +- 0.004) MeV ⁻¹

The center of the masked region does not change: 16.888 MeV The excess also remains basically of the same strength: 1.6σ

Use scan1-scan2 separate parametrizations for B(s) instead of using B(s) / point: Excess region only slightly affected and equivalent to ~1.6 σ

Box opening – IV Check of correction

After box opening, can check ageing correction applied, slope was 0.097(7) Fully consistent (observed excess alters only marginally)

The slope has been used to correct for the radiation-induced effect, acting as a separate nuisance

Again no significant change in the location of the excess and in the global p-value

Details on the event count N₂

Background subtraction using side-bands (bremsstrahlung, ~4%) Correction relative variation +-1%, statistical uncertainty on $\delta N_2 \sim 0.3\%$

Details on background: cut stability

Check if MC and data yields stable vs $R_{\text{min}},\,R_{\text{max}}$ (edge effects, leakage)

Vary R_{max} by +-2 E_{Cal} cells around nominal cut of 270 mm: 230 mm \rightarrow 300 mm

Stability is observed within a coverage band of +-0.2%, add 0.035% uncorrelated systematic error on B

Details on background: acceptance variations

The selection makes use of the expected beam direction, from the spot measured at the diamond target and the center of gravity (COG) of 2 body final states at ECal

Systematic shifts in the COG position translate into acceptance systematic errors

Largest effect in y due to acceptance limitations (rectangular magnet bore) Fractional variations range from 0.08% to 0.1% mm⁻¹ for s^{1/2} from 16.4 to 17.4 MeV

An error of 1 mm in the COG is a conservative estimate \rightarrow systematic error < 0.1%

Details on background: cluster reconstruction

من 300 من 100 م

300

100

-100

Efficiency

0.95 MC true

0.9

0.85

0.75

Efficiency around 1 within few % except in specific regions (Ecal edges, dead cells)

Tag & probe: method-induced bias 2.3(2)%, stable along the data set

Data/MC method efficiency stable along the data set and at the few per mil

Details on background: cluster reconstruction

Check of reconstruction efficiency:

Efficiency for data and MC evaluated using tag-and-probe technique Statistical error dominated by background subtraction at tag level

Data/MC energy-flat, compatible with 1, error O(1%) per period

<Data/MC> vs period, P_{Fit}(const) ~ 20%

No correction applied per period, statistical-systematic error of 0.35%

↩

What's PADME – the detector: beam monitors

 $1.5 \times 1.5 \text{ mm}^2$ spot at active, 100 μ m diamond target: position, multiplicity $1 \times 1 \text{ mm}^2$ pitch X,Y graphite strips [NIM A 162354 (2019)]

CERN MBP-S type dipole: 112×23 mm² gap, 70 cm long Beam monitor (Si pixels, Timepix3) after bending: $\sigma_P/P_{beam} < 0.25\%$

What's PADME – the TDAQ concepts

Three trigger lines: Beam based, Cosmic ray, Random

Trigger and timing based on custom board [2020 IEEE NSS/MIC, doi: 10.1109/NSS/MIC42677.2020.9507995]

Most detectors acquired with Flash ADC's (CAEN V1742), O(10³) ch's: 1 μs digitization time window 1 V dynamic range, 12 bits sampling rates at 1, 2.5, 5 GS/s

Level 0 acquisition with zero suppression, ×10 reduction \rightarrow 200 KB / ev. Level 1 for event merging and processing, output format ROOT based

First experiment goal (A' invisible search) required 10¹³ POT, O(80 TB)

Details on the flux N_{POT}: leakage correction

Loss from detailed MC vs vertical position checked against data in test beam Very good data-MC agreement, correction 1.2%, systematic error 0.5% Significant period-by-period variation of the correction: -4% to +2%

Details on the flux N_{POT}: rad-induced correction

The literature indicates possible changes in SF57 transparency for O(krad) Estimate of Run-III dose: 2.5 krad

Estimated from 3 flux proxy observables: Qx target, <E_{Ecal}>, period multiplets

Leadglass yield decreases with relative POT slope of 0.097(7) Constant term uncertainty of 0.3% added as scale error Slope error included in POT uncertainty

Details on the flux N_{POT}: rad-induced correction

The literature indicates possible changes in SF57 transparency for O(krad) Estimate of Run-III dose: 2.5 krad

Estimated from 3 flux proxy observables: Qx target, <E_{Ecal}>, period multiplets Leadglass yield decreases with relative POT slope of 0.097(7) Constant term uncertainty of 0.3% added as scale error Slope error included in POT uncertainty

Measurement of $e^+e^- \rightarrow \gamma\gamma$: data set and concept

Using < 10% of Run II data, $N_{POT} = (3.97 \pm 0.16) \times 10^{11}$ positrons on target Expect $N_{ee \rightarrow \gamma\gamma} \sim 0.5$ M, statistical uncertainty < 1% Include various intensities, e⁺ time profiles for systematic studies Evaluate efficiency corrections from MC + data

Master formula:

 N_{POT} from diamond active target

Uncertainty on e⁻ density $n_{e/S} = \rho N_A Z/A d$ depends on thickness d

Run #	NPOT [10 ¹⁰]	e ⁺ /bunch [10 ³]	length [ns]
30369	8.2	27.0 ± 1.7	260
30386	2.8	19.0 ± 1.4	240
30547	7.1	31.5 ± 1.4	270
30553	2.8	35.8 ± 1.3	260
30563	6.0	26.8 ± 1.2	270
30617	6.1	27.3 ± 1.5	270
30624	6.6	29.5 ± 2.1	270
30654	No-target	~ 27	~ 270
30662	No-Target	~ 27	~ 270

$e^+e^- \rightarrow \gamma\gamma$: POT, target thickness

 N_{POT} from active target, uncertainty is 4%:

- 1. Absolute calibration by comparing with lead-glass calorimeter fully contained from 5k to 35k e+/bunch
- 2. When focusing beam into 1-2 strips, non-linear effects observed

 $n_{e/S}$ from target thickness, uncertainty is 3.7% (i.e., ~3.7 μ m)

- 1. Measured after assembly with profilometer with 1 μm resolution as difference with respect to the supporting surface
- 2. Correction due to roughness (quoted as 3.2 μm by producer): compare precision mass and thickness measurements on similar diamond samples

The blind unblinding procedure: details

Constant term and slope of the optimized fit estimate the true values for K(s) Results of the procedure ran on toy experiments with constant = 1, slope = 0

Moreover the procedure correctly finds the central location of signals when present

The PCL method

Using CLsb but clipping to the median every downward fluctuation of the limit

The global p-value is only slightly affected, consistent with the coverage modifications of this method

The PADME ECal

The main detector for the signal selection [JINST 15 (2020) T10003]:

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint + 50–100 μm black tedlar foils (optical isolation)

Calibration at several stages:

- BGO + PMT equalization with ²²Na source before construction
- Cosmic-ray calibration using the MPV of the spectrum
- Temperature monitoring + scale correction data driven

The PADME beam catcher calorimeter

The main detector for the flux determination [JHEP 08 (2024) 121]:

- SF57 block, reused from OPAL, tested for the NA62 LAV detector [JINST 12 (2017) 05, P05025]
- Several testing campaigns
 - A few positrons
 - O(2000) PoT cross-calibration with the BTF FitPix

The blind unblinding constraining power

Determine the number of times an experiment outcome would be rejected in presence of additional uncorrelated errorsx

- With the cut applied, errors > 1% are excluded at 90% CL
- Had we put a tighter condition, we would have excluded additional errors at 0.8% but at the cost of risking to reject by statistical fluctuations ~8% of the outcomes

The new micromega-based tracker

Detector installed with the novel diamon-shaped readout

Outer dimensions 88 x 88 cm²

Readout by APV25

Time window up to 675 ns (drift time ~500 ns)

Gas mixture: Ar:CF₄:Isobutane = 88:10:2

Provides beam spot with uncertainty $\sigma_{\text{x},\text{y}}$ ~ 30 μm

Track points with $\sigma_{x,y} \sim 350 \ \mu m$ and $\sigma_z \sim 2 \ mm$ per point

