New light particle searches with PADME

Kalina Dimitrova Faculty of Physics, Sofia University

Workshop at 1GeV scale: From mesons to axions

19-20.09.2024 Krakow, Poland

Outline

- The PADME Experiment: detectors and data taking
- PADME Run I and Run II
- Results on e+e− → yy cross section
- PADME Run III
 - Setup and strategy for X17 search
 - Signal and event selection
- · Sensitivity estimation
- Towards PADME Run IV

Positron annihilation into new light particles

Associated production: e⁺ e⁻ → A' y

The PADME technique

PADME Experiment

Active target (Lecce & University Salento)

Dipole magnet ` CERN TE/NSC-MNC)

BGO calorimeter (Roma, Cornell U., LNF, LE)

Veto scintillators (University of Sofia, Roma)

TimePIX3 array (ADVACAM, LNF)

Active target

Polycrystalline diamond

- 100 μm thickness:
- 16 × 1 mm strip and X-Y readout in a single detector
- Graphite electrodes using excimer laser

JINST 12 (2017) 02, C02036

Calorimeters

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
- additional optical isolation: 50 100 µm black tedlar foils

Calibration at several stages:

- BGO + PMT equalization with ²²Na source before construction
- Cosmic rays calibration using the MPV of the spectrum
- Temperature monitoring

Nucl.Instrum.Meth.A 919 (2019) 89-97

Small Angle Calorimeter (SAC)

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: 3 × 3 × 14 cm³
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at E_{beam} = 550 MeV):
 - **PVeto**: positrons with 50 MeV $< p_{e+} < 450$ MeV
 - **HEPVeto**: positrons with 450 MeV $< p_{e+} < 500$ MeV
 - **EVeto**: electrons with 50 MeV $< p_{e+} < 450$ MeV
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

- Custom SiPM electronics, Hamamatsu S13360 3 mm,
 25µm pixel SiPM
- Differential signals to the controllers, HV, thermal and current monitoring

JINST 19 (2024) 01, C01051

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T_0 calculation better than 1 ns

Main background processes

Bremsstrahlung in the field of the target nuclei

- Photons mostly @ low energy, background dominates the high missing masses
- An additional lower energy positron that could be detected due to stronger deflection

2 photon annihilation

- Peaks at $M_{miss} = 0$
- Quasi symmetric in gamma angles for $E_{\gamma} > 50 \text{ MeV}$

3 photon annihilation

Symmetry is lost – decrease in the vetoing capabilities

Radiative Bhabha scattering

Topology close to bremsstrahlung

Background process	Cross section e+@550 MeV beam	Comment Carbon target
e⁺e⁻ → γγ	1.55 mb	
$e^+ + N \rightarrow e^+ N \gamma$	4000 mb	Eγ > 1MeV
e⁺e⁻ →γγγ	0.16 mb	CalcHEP, Eγ > 1MeV
e⁺e⁻ → e⁺e⁻γ	180 mb	CalcHEP, Eγ > 1MeV

PADME RUN I and II

Run I and PADME commissioning

- started in Autumn 2018 and ended on February 25th
 - ~7 x 10¹² PoT recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks
 - Primary beam with E_{beam} = 490 MeV

RUN II: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with O(5x10¹²) e⁺
 on target
 - \circ E_{beam} = 430 MeV

ML for double particle separation in ECal

- Al to identify the number of pulses in a waveform
- Simple output up to five pulses
- Trained on 100 000 events

Time [ns]

e+e- → yy events

e⁺e⁻ → yy cross section

- Below 0.6 GeV known only with 20% accuracy
- Can be sensitive to sub-GeV new physics (e.g. ALP's)
- Using 10% of Run II sample
- Tag-and-probe method on two back-to-back clusters
- Exploit energy-angle correlation

e+e- → yy cross section

n POT: target calibration

Electron density (target

thickness)

$$\sigma(e^+e^- \to \gamma\gamma(\gamma)) = 1.930 \pm 0.029(\text{stat}) \pm 0.099(\text{syst}) \text{ mb}$$

0.079

0.020

Probing X17

Θ (degrees)

arXiv:2308.06473 [nucl-ex]

the X particle (2 body decays)

 10^{-1}

PADME strategy for X17

Cross section enhancement with the approach of the production threshold

- Resonant production of X17
- Energy at resonance: ~283 MeV: scan
- Need to measure the final state to reconstruct the invariant mass
 - Or change in cross section

$$\sigma_{\rm res}(E_e) = \sigma_{\rm peak} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4}$$

$$\sigma_{\rm peak} = 12\pi/m_{A'}^2$$
 $\Gamma_{A'} = \frac{1}{3}m_{A'}\varepsilon^2\alpha$

e+e- → X17 → e+e-

Bhabha scattering dominates the event rate in the background contribution for high $P_{\rm e+}$

Resonant cross section significant → X17 event yield

$$\mathcal{N}_{X_{17}}^{\text{Vect.}} \simeq 1.8 \cdot 10^{-7} \times \left(\frac{g_{ve}}{2 \cdot 10^{-4}}\right)^2 \left(\frac{1 \text{ MeV}}{\sigma_E}\right)$$
$$\mathcal{N}_{X_{17}}^{\text{ALP}} \simeq 5.8 \cdot 10^{-7} \times \left(\frac{g_{ae}}{\text{GeV}^{-1}}\right)^2 \left(\frac{1 \text{ MeV}}{\sigma_E}\right)$$

 $\sigma_{\!\scriptscriptstyle E}$ - beam energy spread

Production of O(10³) X17 events with 10¹⁰ positrons on target

Change in $\sigma_{tot}(e^+e^- \rightarrow e^+e^-)$

PADME RUN III

Running with no magnetic field in PADME dipole

N°2 scintillator units 260x45x5 (da definire)

Components in the analysis:

- Signal selection & events identification
 - **Background contribution**
- **Determination of the normalization**
 - PADME beam measurement
- **Expected signal yield**
 - "Theory" input: X17 line shape

Signal selection: $N_{2cl} = N_{e+e-} + N_{yy}$

- ECal based: two in-time clusters with two body kinematics
- Background estimation: ~ 4 %
- The measurement is N_{2cl}/Flux (E_{beam})
 - Flux = PoT

Signal selection: selection efficiency

Cluster reconstruction efficiency: TAG & PROBE with DATA

- Single hit identification threshold of 15 MeV
- Cluster reconstruction efficiency is stable over time
 - With the bad crystals excluded from the reconstruction

Geometrical efficiency (acceptance)

- Dominated by the cut on the outer radius of a cluster in the calorimeter
- Beam center drift limits the maximal R_{cut}

Event selection and beam position monitoring

Timepix 3 array

- Matrix of 2 x 6 Timepix3 detectors
 - each 256x256 pixels
- Operated in 2 modes:
 - image mode, integrating
 - streaming mode, feeding ToT and ToA for each fired pixel

COG at the ECal front face from 2 cluster events

Timepix was moved by 1.8 mm

JHEP 2024, 2024(8), 121

Positron flux measurement

- PoT is primarily measured by an OPAL lead glass block downstream of the setup
- Additional detectors to control the PoT systematics
 - and to derive correction factors
- Several testing campaigns
 - A few positrons -> clear 1e, 2e, etc. peak identification
 - O(2000) PoT cross-calibration with the BTF FitPix

- Higher energy runs
 - control of the NPoT systematics
 - 2 clusters selection stability

- Validation of the toy MC (and F_{pixel} correction factor) with an independent measurement from BTF luminometer
- Correction uncertainty of the order of 1 %
 - Common to all the measurements

Sensitivity estimation

- Sensitivity depends on S/B and the uncertainty on the background determination
 - Statistical (N_B), 47 points with O(10¹⁰) PoT, $\Delta E = 0.75$ MeV
 - Systematics (e.g. N_{poT})
 - Background: N_B ~ 45000 events per point
 - Signal acceptance

Sources of systematics

- Relative PoT estimation O(0.5%)
- Acceptance 0.75%
- Beam energy spread 0.05 %
- Signal shape uncertainty
- Beam
- Time dependent ECal efficiency
- Beam energy uncertainty controlled by Hall probes < 10⁻³
- ECal calibration

Normalization systematics

absolute PoT - 5 %

PADME MC sensitivity estimate for RUN III

- Expected 90% CL upper limits are obtained with the CLs method
 - modified frequentist approach, LEP-style test statistic
- Likelihood fits performed for the separate assumptions of signal + background vs background only

$$Q_{\text{statistics}} = -2 \ln (L_{s+b} / L_b)$$

- Pseudo data (SM background) is generated accounting for the expected uncertainties of nuisance parameters + statistical fluctuations
- 150 Nuisance parameters:
 - o POT of each scan point
 - Common error on POT (scale error)
 - Signal efficiency for each scan point
 - Background yield for each scan point
 - $\begin{tabular}{ll} \hline \circ & Signal shape parameters: signal yield \\ \hline @ a given X17 mass and <math>g_{ve} \\ \hline \end{tabular}$
 - Signal shape parameter: beam-energy spread

Strategy for PADME Run IV: Nete-INyy

 The results from PADME RUN III will be dominated by PoT systematics, two clusters acceptance acceptance systematics

Exploit a different normalization channel which could possibly cancel part of the systematic effects

- Natural candidate: e⁺e⁻ → yy
 - Same 2 body kinematics: similar ECal illumination, systematics due to bad ECal crystals largely cancels
- Back on the envelope estimation: need knowledge of N_{yy} at 0.5 % for each scanning point
 - $\circ \quad \sigma(e^+e^- \to \gamma\gamma)_{\text{E=300 MeV}} \sim 2 \text{ mb, Acc } (e^+e^- \to \gamma\gamma) \sim 10 \text{ \%} \quad \Rightarrow \quad O(10\text{k}) \text{ yy events per } 10^{10} \text{ PoT}$
 - Need 4 times higher statistics per scan point
 - Less scan points due to the widening of X17 lineshape because of the electronic motion
 - Higher intensity by a factor of 2
- Need good separation between charged and neutral final states

PADME tagger

- A novel micromegas readout plane suggested
 - Rhomboidal pads for X and Y direction, decrease the mutual capacitance
- Variable HV depending on the distance from the beam center
 - Low HV in the center, measure the beam multiplicity
 - Additional control on the PoT
 - Higher HV in periphery to ensure close to 100 % efficiency

- Gas mixture: Ar: CF_4 :i- C_4H_{10} = 88:10:2
- Readout SRS system with APV ASIC hybrid
 - An adapter card in preparation to allow APV25 to accept/record trigger signal
 - Timing and event matching

Conclusions

- PADME Run II data used for e+e− → yy cross section determination
- Dark photon analysis in RUN I/II data pushed forward thanks to application of ML methods for hit reconstructions in high rate environment
- X17 analysis advances by exploring the systematics
 - \circ PoT determined with various cross-calibration procedures with uncertainty down to < 1 %
 - Signal acceptance and background estimation under control with systematics O(1%)
- A major improvement to PADME setup before RUN IV
 - Precise e⁺e⁻ / γγ discrimination with a new Micromegas tracker
 - Allow probing the full unexplored region for the X17 allowed parameter space