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• The PADME Experiment: detectors and data taking

• Machine learning methods, developed for the PADME data reconstruction
• Data simulation, neural networks and performance 

• Applying the trained models on real experiment data

• Explainability investigation



  

The PADME ExperimentThe PADME Experiment
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• Small scale fixed target experiment

– e+ @ Frascati Beam Test Facility

– Accelerated e+ interacting in a thin 
diamond active target 

– Final states: e+, e-, photons

– Charged particles detectors

– Calorimeter

– Beam monitoring system

Associated production: 
e+ e- → A’ γ



  

PADME ExperimentPADME Experiment
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Active targetActive target

PADME Diamond
CCD ≈ 12 μm

● Polycrystalline 
diamond 

● 100 μm thickness:
● 16 × 1 mm strip and 

X-Y readout in a 
single detector

● Graphite electrodes 
using excimer laser

● JINST 12 (2017) 02, C02036



  

CalorimetersCalorimeters
ECAL: The heart of PADME

● 616 BGO crystals, 2.1 x 2.1 x 23 cm3

● BGO covered with diffuse reflective 
TiO2 paint 

● additional optical isolation: 50 – 100 
μm black tedlar foils

 JINST 15 (2020) T10003
Calibration at several stages:

● BGO + PMT equalization with 22Na source before 
construction

● Cosmic rays calibration using the MPV of the spectrum
● Temperature monitoring 

Small Angle Calorimeter (SAC)
● 25 crystals - 5 x 5 matrix, Cherenkov PbF2

● Dimensions of each crystal: 3 × 3 × 14 cm3 
● 50 cm behind ECal
● PMT readout: Hamamatsu R13478UV with 

custom dividers
● Angular acceptance: [0,19] mrad

• 400 ps/sample
• time resolution: < 100 ps

Recorded bunch

Nucl.Instrum.Meth.A 919 (2019) 89-97



  

Charged particle detectorsCharged particle detectors
● Three sets of detectors detect the charged particles from 

the PADME target (at Ebeam = 550 MeV):

− PVeto: positrons with 50 MeV < pe+ < 450 MeV

− HEPVeto: positrons with 450 MeV < pe+ < 500 
MeV

− EVeto: electrons with 50 MeV < pe+ < 450 MeV
● 96 + 96 (90) + 16 (x2)   scintillator-WLS-SiPM RO 

channels
● Segmentation provides momentum measurement down 

to ~ 5 MeV resolution

• Custom SiPM electronics, 
Hamamatsu S13360 3 mm, 

25μm pixel SiPM

• Differential signals to the 
controllers, HV, thermal and 
current monitoring

• Online time resolution: ~ 2 ns
• Offline time resolution after fine T0 calculation – better than 1 ns

Time calibration with SAC
using Bremsstrahlung 
events

JINST 19 (2024) 01, C01051



  

The machine learning approach to PADME data: a summaryThe machine learning approach to PADME data: a summary

Signal 
simulation

Simple CNN for 
counting

Autoencoder Modified 
autoencoder

3 signals here!

● Generation of noise + 
several waveforms

● Predefined signal shape
● Difference between two 

exponents
● Calorimeter response 

function
● Fixed rise and fall time

● Random number of signals 
(between 0 and 4)

● Random amplitude and 
arrival time for each signal 

● Classification task to 
identify the number of 
pulses in a waveform

● Trained on 100 000 events

● 100% signal discrimination 
above 50 ns difference, 
90% above 30 ns 

● Convolutional autoencoder 
for signal and noise 
description

● Unsupervised learning – 
both input and desired 
output are the waveform 
arrays

● The waveforms are 
successfully replicated with 
the noise in the signal 
regions significantly 
suppressed  

● Same architecture as 
autoencoder network

● Supervised learning –desired 
output contains information 
about the time and amplitude

● Efficiency for time and 
amplitude thoroughly 
investigated:
● Excellent arrival time 

determination
● Problems with amplitude 

reconstruction



  

Main properties of the modified autoencoder reconstructionMain properties of the modified autoencoder reconstruction
Pulse identification 

● Efficiency for lower numbers of 
signals are higher because of 
unrecognized signals from 
events with higher numbers

● For closely located signals: Most 
of the missed events are with dt 
< 10 ns 

● Most of the events with 
amplitudes < 50mV are not 
identified

● Δt distribution is symmetric, non-gaussian tails 
exist

● σ  ~ 520 ps, RMS ~ 3.2 ns 
● Strong correlation between real and 

reconstructed amplitude
● Worse reconstruction for the small amplitudes

Arrival time and amplitude determination 



  

Application on real data and the effect Application on real data and the effect 
of the merging window width using of the merging window width using 
e+e-→γγ events e+e-→γγ events 

● The total number of clusters for the original 
reconstruction and for the various ML cases is 
similar despite the wider peak

● Solution is adjusting the ML reco peaks through 
introducing additional calibration

The merging window is the amount of neighboring 
position values added to the main signal amplitude 
when constructing the ML results



  

Development of explainability methodsDevelopment of explainability methods

Blue model

Orange model

Green model



  

Occlusion sensitivity investigationOcclusion sensitivity investigation

Blue model: filter 18, linear activation
Orange model: filter 14, linear activation
Green model: filter 18, ReLu activation

● See predictions for certain cases of mask 
position

● First idea:
● See what happens if we mask the region 

right before the signal rise → would the 
signal be misplaced, predicted earlier and 
with a higher amplitude?

● See what happens if we leave only the 
signal rise and mask the region before 
and after it → would the signal be found 
at all?
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Gradually unmasking the signalGradually unmasking the signal
After 3 unmasked values

After 12 unmasked values After 15 unmasked values

● After 3 unmasked values: signal starts to 
appear (at a wrong place)

● After 12 unmasked values: 
arrival time is found

● After 15 unmasked 
values: amplitude rises
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Gradually unmasking the signalGradually unmasking the signal
Blue model: filter 18, linear activation
Orange model: filter 14, linear activation
Green model: filter 18, ReLu activation

Total loss as a function of the number of 
unmasked values after the signal rise

● Initially very high – no signal found
● Lowers with unmasking more signals, reaches a minimum and returns to a constant
● Minimum for the green model is deepest (best model?) and is at 18 unmasked values after the signal rise – same as 

the last filter size
● Signal rise time + minimum value is what is needed to find a signal → explains the minimum distance between two 

signals for them to be separated? (30 ns from analysis)
● “worse” models reach a minimum at fewer unmasked values → could they be better for double pulse separation
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Weighted arrival time valueWeighted arrival time value

Predicted time after the true time 
(Green model)

Rise in total loss

No rise in total loss

Predicted time before the true 
time (Green model)

t arrival=
∑

i=t max−τ

t max+τ

t i A i

∑
i=t max−τ

t max+τ

A iThe arrival time is no longer taken as the time of the maximum prediction (integer) but 
as the weighted average of all positions with non-zero predictions
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Unmasked data length after signal rise [ns]

This provides motivation 
to train models with 

upsampled output with 
the aim to achieve better 

time resolution



  

ConclusionsConclusions

● PADME calorimetric system has to provide reliable energy reconstruction and shower 
separation

● Different ML topologies for signal reconstruction tested
● Classification → number of signals
● Autoencoder → noise filtration
● Modified autoencoder → signal parameters estimation

● First successful physics events reconstruction: e+e-→γγ events

● The occlusion sensitivity method was applied for investigation of the output of the neural 
networks.
○ Two distinct ways the loss behaves point to the importance of using the weighted 

average for the arrival time instead of simply the maximum position
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