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Outline

* The PADME Experiment: detectors and data taking

* Machine learning methods, developed for the PADME data reconstruction
- Data simulation, neural networks and performance

* Applying the trained models on real experiment data

* Explainability investigation



The PADME Experiment

Positron Annihilation into Dark Matter Experiment
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PADME Experiment
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Active target
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Calorimeters

Nucl.Instrum.Meth.A 919 (2019) 89-97

ECAL: The heart of PADME

* BGO covered with diffuse reflective
TiO, paint

* additional optical isolation: 50 — 100
um black tedlar foils

Calibration at several stages:
* BGO + PMT equalization with 2?Na source before
construction

* 616 BGO crystals, 2.1 x 2.1 x 23 cm? -
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* Cosmic rays calibration using the MPV of the spectrum

* Temperature monitoring

Recorded bunch

Small Angle Calorimeter (SAC)
« 25 crystals - 5 x 5 matrix, Cherenkov PbF,
* Dimensions of each crystal: 3 x 3 x 14 cm?
* 50 cm behind ECal
* PMT readout: Hamamatsu R13478UV with w,
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Charged particle detectors

o Three sets of detectors detect the charged particles from
the PADME target (at E,,,, = 550 MeV):

PVeto: positrons with 50 MeV < p,, < 450 MeV

HEPVeto: positrons with 450 MeV < p., < 500
MeV

EVeto: electrons with 50 MeV < p,, < 450 MeV

o 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO
channels

o Segmentation provides momentum measurement down
to ~ 5 MeV resolution
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* Differential signals to the
controllers, HV, thermal and
current monitoring
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The machine learning approach to PADME data: a summary

Signal
simulation

Generation of noise +
several waveforms
Predefined signal shape

e Difference between two
exponents

* Calorimeter response
function

* Fixed rise and fall time

Random number of signals
(between 0 and 4)

Random amplitude and
arrival time for each signal
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Simple CNN for

counting

3/signals here!
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Classification task to
identify the number of
pulses in a waveform

Trained on 100 000 events

100% signal discrimination
above 50 ns difference,
90% above 30 ns
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Autoencoder
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Convolutional autoencoder
for signal and noise
description

Unsupervised learning —
both input and desired
output are the waveform
arrays

The waveforms are
successfully replicated with
the noise in the signal
regions significantly
suppressed

Modified
autoencoder

Mialisndal
Rt

Same architecture as
autoencoder network

Supervised learning —desired
output contains information
about the time and amplitude

Efficiency for time and
amplitude thoroughly
investigated:

* Excellent arrival time
determination

* Problems with amplitude
reconstruction



Main properties of the modified autoencoder reconstruction
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Pulse identification

Efficiency for lower numbers of

signals are higher because of

unrecognized signals from
events with higher numbers

For closely located signals: Most
of the missed events are with dt

<10 ns

Most of the events with
amplitudes < 50mV are not
identified

Arrival time and amplitude determination
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At distribution is symmetric, non-gaussian tails
exist

o0 ~520 ps, RMS ~ 3.2 ns

Strong correlation between real and
reconstructed amplitude

Worse reconstruction for the small amplitudes



Number of clusters
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Application on real data and the effect
of the merging window width using

e+e-- Yy events

Total cluster energy for events with two clusters with At<5ns

500
Total cluster energy [MeV]

The total number of clusters for the original
reconstruction and for the various ML cases is
similar despite the wider peak

Solution is adjusting the ML reco peaks through
introducing additional calibration

Number of clusters

Th

e merging window is the amount of neighboring

position values added to the main signal amplitude
when constructing the ML results
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Occlusion sensitivity investigation

« See predictions for certain cases of mask
position

e First idea:

« See what happens if we mask the region
right before the signal rise - would the
signal be misplaced, predicted earlier and
with a higher amplitude?

« See what happens if we leave only the
signal rise and mask the region before
and after it —. would the signal be found
at all?

Blue model: filter 18, linear activation
Orange model: filter 14, linear activation
Green model: filter 18, ReLu activation

Occlusion Sensitivity

Green model Orange model Blue model
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Gradually unmasking the signal

 After 3 unmasked values: signal starts to
appear (at a wrong place)

After 12 unmasked values:
arrival time is found

After 12 unmasked values

Occlusion Sensitivity

After 15 unmasked
values: amplitude rises
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Total loss

Gradually unmasking the signal

Total loss as a function of the number of
unmasked values after the signal rise
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Initially very high — no signal found
Lowers with unmasking more signals, reaches a minimum and returns to a constant
Minimum for the green model is deepest (best model?) and is at 18 unmasked values after the signal rise — same as

the last filter size

Blue model: filter 18, linear activation
Orange model: filter 14, linear activation
Green model: filter 18, ReLu activation

Signal rise time + minimum value is what is needed to find a signal - explains the minimum distance between two
signals for them to be separated? (30 ns from analysis)

* “worse” models reach a minimum at fewer unmasked values - could they be better for double pulse separation
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Weighted arrival time value

The arrival time is no longer taken as the time of the maximum prediction (integer) but |
as the weighted average of all positions with non-zero predictions

Predicted time after the true/time
(Green model)

Predicted time before the true
time (Green model)
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Unmasked data length after smlgnal rise [ns]

Occlusion sensitivity

Total loss

No rise in total loss

This provides motivation
to train models with
upsampled output with
the aim to achieve better
time resolution

 Unmasked data length after smignal rise [ns]



Conclusions

e PADME calorimetric system has to provide reliable energy reconstruction and shower
separation

e Different ML topologies for signal reconstruction tested
* Classification — number of signals
* Autoencoder - noise filtration
* Modified autoencoder - signal parameters estimation

e First successful physics events reconstruction: e+e- - yy events

e The occlusion sensitivity method was applied for investigation of the output of the neural
networks.
o Two distinct ways the loss behaves point to the importance of using the weighted
average for the arrival time instead of simply the maximum position
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