

The X_{17} resonant research at

M. Mancini^{1,2} on behalf of PADME Collaboration

¹ National Laboratories of Frascati – INFN, 00044 Frascati (RM), Italia ² Physics Department, University of Roma "Tor Vergata", 00133 Roma, Italia

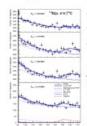
marco.mancini@lnf.infn.it

60th International Winter Meeting on Nuclear Physics, 22-26 January 2024, Bormio – Italy

The X_{17} resonant research at

M. Mancini^{1,2} on behalf of PADME Collaboration

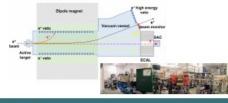
¹ National Laboratories of Frascati - INFN, 00044 Frascati (RM), Italy


² Physics Department, University of Roma "Tor Vergata", 00133 Roma, Italia

marco.mancini@Inf.infn.it

The X_{17} anomaly

Anomaly in the angular correlation of $\theta^+\theta^-$ pairs emitted via Internal Pair Creation (ATOMKI anomaly) in 8Be , 4He and ^{12}C nuclear transitions [1]. Main properties of the hypothetical new particle:


- $J_* = L \oplus J_0 \oplus J_X$ and $P_* = (-1)^L P_0 P_X$ to identify the nature of the particle [2]

N.	1.	Scalar X17	Pseudoscalar X17	Noter X17	Axial Verter XI
Be(18.13)	11			1	- /
C 17.291	1"			1	1
He(21.00)	0.		1	- 7	1
He(20.21)	0.0	- /		1	
				12C L	est results
					100

PADME experiment

The Positron Annihilation into Dark Matter Experiment @LNF searched A' in the $\theta^+\theta^- \to \gamma A'$ process during Run I and II

- ε⁺-beam (E < 550 MeV) on 100 μm diamond target

- Dipole 8-field bends out un-interacting beam and charged particles
- · Electromagnetic Calorimeter (ECal) to measure photons
- . Small Angle Calorimeter (SAC) Bremm, rejection behind ECal hole
- Charged particle vetoes of plastic scintillator bars

 $\sigma_E \simeq 0.7 \, \text{MeV}$

Collected data

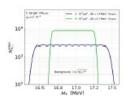
Data taking lasted 3 months at the end of 2022

47 points in 260 < E_{beam} < 300 MeV with

Acquired luminosity ~ 6 × 10¹¹ PoT:

5 points in 205 < E_{beam} < 212 MeV

1 point at E_{beam} = 402 MeV


The PADME Run III

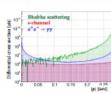
Production mechanism

Resonant annihilation: $e^+e^- \rightarrow X_{17}$ and search for visible decays into 8+8-

$$\begin{split} \sigma_{res}(\sqrt{s}) &= \frac{12\pi}{m_{X_{17}}^2} \frac{\Gamma_{X_{27}}^2/4}{(\sqrt{s} - m_{X_{27}})^2 + \Gamma_{X_{27}}^2/2} \\ &\otimes \text{PADME } \sqrt{s} = \sqrt{2m_e E_{beam}} \text{ and } \sigma_{res}(\sqrt{s}) \\ &\text{increases if } \sqrt{s} = m_{X_{19}} \end{split}$$

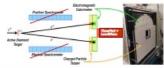
→ invariant mass scan procedure [4,5]

g_V vector-electron Gaussian beam spread → σ_E beam energy spread


$$N_{X_{17}}^{perPoT} \simeq \frac{g_{V_e}^2}{2m_e} \ell_{tar} \frac{N_A \rho Z}{A} f \left(\frac{m_{X_{12}}^2}{2m_e}, E_{beam}\right)$$

Main 5M background processes: Bhabha scattering & γγ-production → Improvements of experimental setup

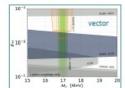
Analysis strategy

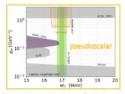

Fixed target experiment: s- and t- channel kinematics can be distinguished

- → X₁₇ resonant production has same acceptance of Bhabha s-channel
- → Full Bhabha scattering strongly boosted in forward direction
- → Set of cuts selecting events in central region where background is comparable to the signal

Run III experimental setup:

- B-field off to detect final state particles with ECal


Out-of-resonance points:


- Using kinematic relation between E_y and θ_y > very good signal to background separation Pure SM measurements
- Comparisons with data and PADME full MC [6]

The data analysis is in progress

- . PADME will set stringent limits on both vector and pseudoscalar hypotheses [5]
- . Measurements of cross sections of involved SM processes below 20 MeV will be performed

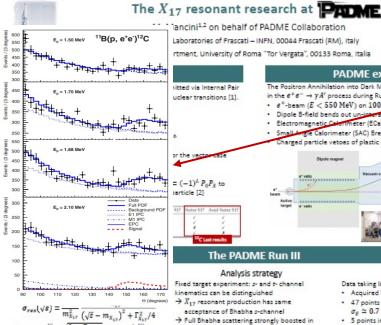
Preliminary results and conclusions

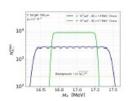
60th International Winter Meeting on Nuclear Physics, 22-26 January 2024, Bormio - Italy

[1] A. J. Krasznahorkay et al, Phys. Rev. C, 106(6):L061601 (2022) [2] J. Feng et al. Phys. Rev. D, 102(3):L036016 (2020) [3] P. Albicocco et al, JINST, 17(08):P08032(2022)

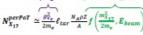
References

- [4] E. Nardi et al, Phys. Rev. D, 97(9):L095004 (2018)
- [5] Darmè et al., Phys. Rev. D, 106:L115036(2022) [6] F. Bossi et al, JHEP, 09:233 (2022)

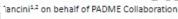



Marco Mancini - marco.mancini@int.infn.it

:	1765	i.e		
208 2	190	Expects 380	ad X ₁₇ ma	858 F ₁₀₀ [100-17]
		T.		A Fig
		21/11	-/	



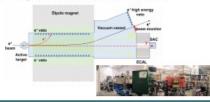
increases if $\sqrt{s} = m_{\chi_{ev}}$ → invariant mass scan procedure [4,5]


@PADME $\sqrt{s} = \sqrt{2m_e E_{beam}}$ and $\sigma_{res}(\sqrt{s})$

g_V vector-electron Gaussian beam spread →

Main SM background processes: Bhabha scattering & γγ-production → Improvements of experimental setup

Laboratories of Frascati - INFN, 00044 Frascati (RM), Italy rtment, University of Roma "Tor Vergata", 00133 Roma, Italia

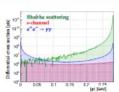


nitted via Internal Pair uclear transitions [1].

PADME experiment

The Positron Annihilation into Dark Matter Experiment @LNF search in the $\theta^+\theta^- \rightarrow \gamma A'$ process during Run I and II

- e^+ -beam (E < 550 MeV) on $100 \mu\text{m}$ diagrand target
- . Dipole B-field bends out un-interacting beam and charged particles
- · Electromagnetic Calonimeter (ECal) to measure photons
- . Small Angle Calorimeter (SAC) Bremm. rejection behind ECal hole harged particle vetoes of plastic scintillator bars

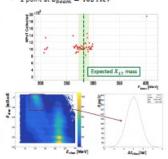


The PADME Run III

Analysis strategy

Fixed target experiment: s- and t- channel kinematics can be distinguished

- → X₁₇ resonant production has same acceptance of Bhabha s-channel
- → Full Bhabha scattering strongly boosted in forward direction
- → Set of cuts selecting events in central region where background is comparable to the signal



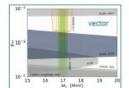
Run III experimental setup:

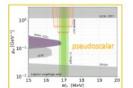
Collected data

Data taking lasted 3 months at the end of 2022

- Acquired luminosity ~ 6 × 10¹¹ PoT:
- 47 points in 260 < E_{beam} < 300 MeV with
- 5 points in 205 < E_{beam} < 212 MeV
- 1 point at E_{beam} = 402 MeV

B-field off to detect final state particles with ECal


Out-of-resonance points:


- Using kinematic relation between E_{y} and θ_{y} > very good signal to background separation
- Pure SM measurements
- Comparisons with data and PADME full MC [6]

Preliminary results and conclusions

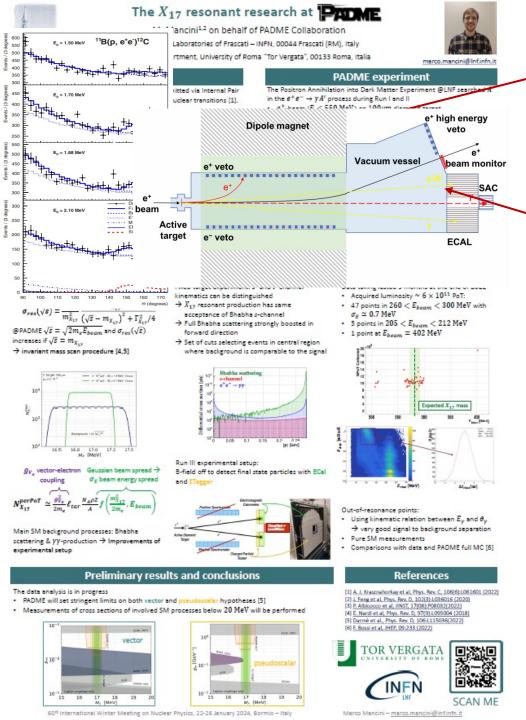
The data analysis is in progress

- PADME will set stringent limits on both vector and pseudoscalar hypotheses [5]
- . Measurements of cross sections of involved SM processes below 20 MeV will be performed

References

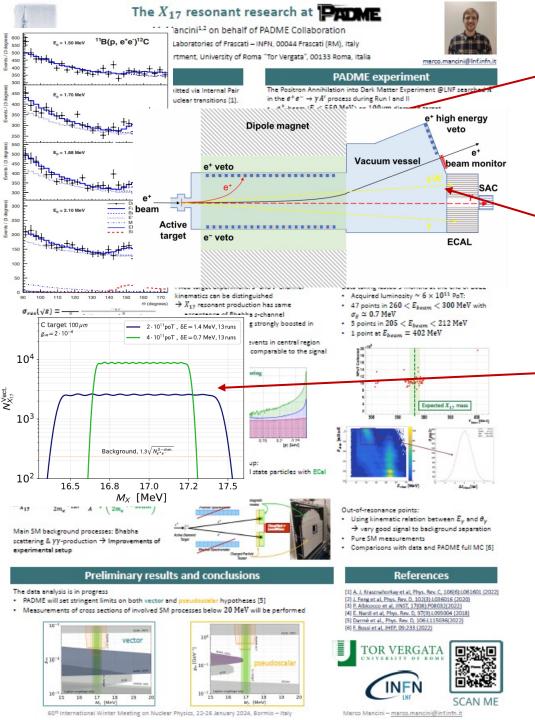
[1] A. J. Krasznahorkay et al, Phys. Rev. C, 106(6):1061601 (2022) [2] J. Feng et al, Phys. Rev. D, 102(3):L036016 (2020) [3] P. Albicocco et al, JINST, 17(08):P08032(2022) [4] E. Nardi et al, Phys. Rev. D, 97(9):1095004 (2018)

[5] Darmè et al., Phys. Rev. D, 106:L115036(2022)



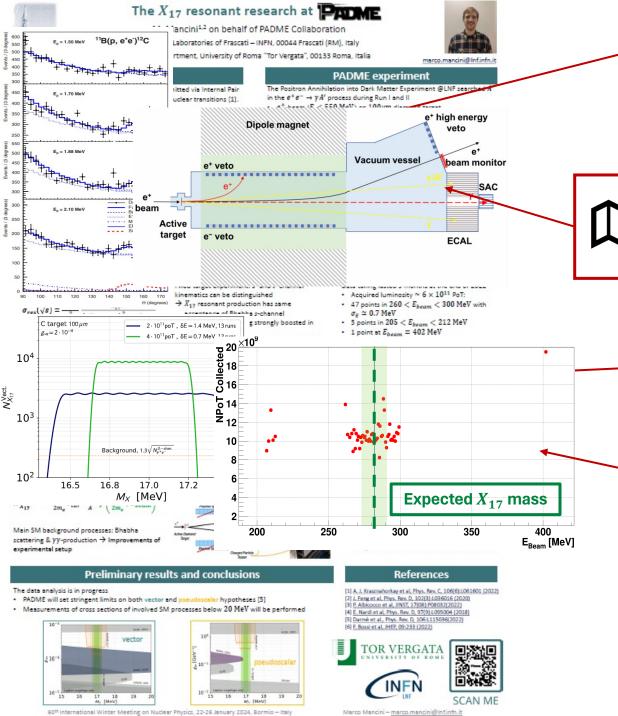
Marco Mancini - marco.mancini@Int.infn.it

The X_{17} anomaly observed firts by ATOMKI collaboration in nuclear physics experiments



The X_{17} anomaly observed firts by ATOMKI collaboration in nuclear physics experiments

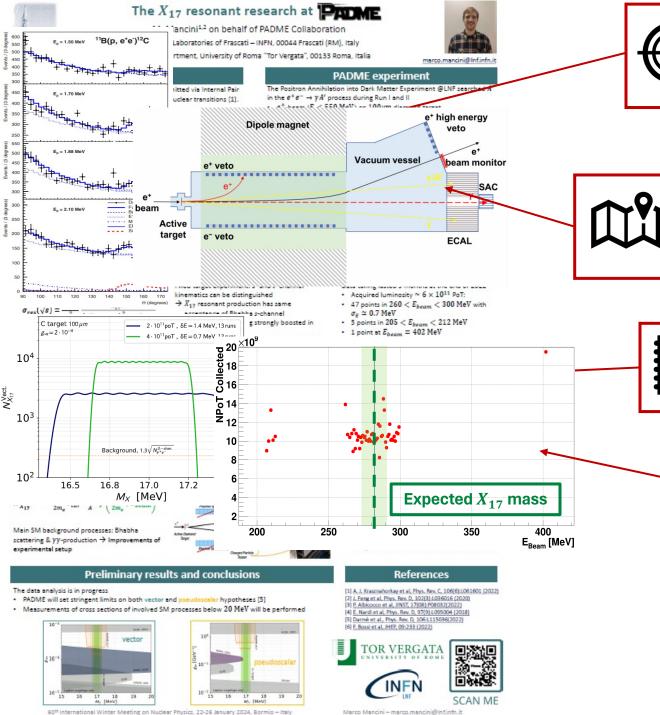
The Positron Annihilation into Dark Matter Experiment – PADME @LNF


The X_{17} anomaly observed firts by ATOMKI collaboration in nuclear physics experiments

The Positron Annihilation into Dark Matter Experiment – PADME @LNF

Resonant annihilation research

The X_{17} anomaly observed firts by ATOMKI collaboration in nuclear physics experiments



The Positron Annihilation into Dark Matter Experiment – PADME @LNF

Resonant annihilation research

The X_{17} anomaly observed firts by ATOMKI collaboration in nuclear physics experiments

The Positron Annihilation into Dark Matter Experiment – PADME @LNF

Resonant annihilation research

See you at the Poster session