



#### Marco Mancini – LNF INFN on behalf of the Collaboration 26-31 March 2023 - Obergurgl University Center <u>marco.mancini@lnf.infn.it</u>









- Dark Photon models and their test @PADME
- Positron Annihilation into Dark Matter Experiment
  - Previous Runs and first physics results
- The  $X_{17}$  anomaly @PADME and the resonant search
  - The Run III
- Conclusions and future prospects



#### The Dark Photon portal



The Dark Photon *A*' is a massive neutral vector portal between SM and Dark Sector

 $\mathcal{L} \sim g_V q_f \, \bar{\psi}_f \gamma^\mu \psi_f A'_\mu$ 

 $g_V \ll 1 \rightarrow \text{hidden}$ 









29/03/2023





Two different production mechanisms, annihilation and emission:

- Resonant annihilation:  $e^+e^- \rightarrow A' \rightarrow \sigma_{res}(E_{e^+}) = \frac{12\pi}{m_{A'}^2} \frac{\Gamma_{A'}^2/4}{(\sqrt{s}-m_{A'})^2 + \Gamma_{A'}^2/4}$
- Associated production:  $e^+e^- \rightarrow \gamma A'$
- *A'*-strahlung:  $e^{\pm} Z \rightarrow e^{\pm} Z A'$

The resonant annihilation is accessible only with a positron-beam facility



Nardi et al. Phys. Rev. D 97, 095004

# Positron Annihilation into DM Experiment



PADME is based @Laboratori Nazionali di Frascati (LNF) and it searches for A' in the associated production  $e^+e^- \rightarrow \gamma A'$ 

•  $e^+$ -beam (E < 550 MeV) on  $100\mu$ m active diamond target

NFN

- Dipole *B*-field bends out the un-interacted beam and charged particles
- Signal  $\rightarrow$  1 $\gamma$  in BGO Electromagnetic Calorimeter (ECal) & nothing elsewhere, measuring  $\Delta M_{miss}^2$  and giving us access to  $m_{A'}$
- Bremsstrahlung rejected by ECal hole and the Small Angle Calorimeter (SAC) immediately behind
- Plastic scintillator bars as charged particle vetoes





#### P. Albicocco et al 2022 JINST 17 P08032





#### Run I and Run II data taking

 $N^{PoT}$ 



- Two Runs in three configurations between September 2018 and December 2020
- Acquired luminosities:
- **Run I**  $\rightarrow$  7 × 10<sup>12</sup> *PoT*
- **Run II**  $\rightarrow$  5.5 × 10<sup>12</sup> *PoT*
- Multiplicity  $N_{bunch}^{PoT} \simeq 3 \times 10^4$
- Changes between the first two runs:
- Run Ia: secondary beam → Run Ib: primary beam
   → Reduced BIB
- Run Ib → Run II: changed the vacuum separation
   → Reduced BG from vacuum window
- Run Ib → Run II: longer beam (250 → 280 ns)
   → Reduced the pile-up in detectors



PADME RunIII - ALPS2023

# **NFN** The Multi-photon annihilation measurement



- From the  $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma))$  measurement:
- Characterisation of ECal
- $\sigma(e^+e^- \to \gamma A') \propto g_V^2 \times \sigma(e^+e^- \to \gamma \gamma) \times \delta(M_{A'})$
- Could be sentisitive to sub-GeV new physics (e.g. ALPs)

First measurement below 500 MeV with < 20% precision with only 10% of Run II dataset



#### <u>F. Bossi *et al.* Phys. Rev. D 107, 012008</u>



PADME  $\rightarrow \sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.930 \pm 0.029_{stat} \pm 0.057_{syst} \pm 0.020_{target} \pm 0.079_{lumi}$  mb QED@NLO  $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.9573 \pm 0.0005_{stat} \pm 0.0020_{syst}$  mb <u>Phys.Lett.B 663 (2008) 209-213</u>

PADME RunIII - ALPS2023



#### The ATOMKI X<sub>17</sub> anomaly



Recently, ATOMKI collaboration announced the observation of an anomaly in the angular correlation of  $e^+e^-$  pairs produced via IPC in the <sup>8</sup>Be, <sup>4</sup>He and <sup>12</sup>C.

The anomaly seems to be compatible with the production and successive decay of a new  $\sim 17$  MeV mass mediator. More details in E. Nardi's talk





Phys. Rev. C 106, L061601



29/03/2023



## The X<sub>17</sub> particle



According to the ATOMKI observations, the main properties of the new  $X_{17}$  particle are:

- $m_{X_{17}} \sim 17 \text{ MeV}$
- $Br(e^+e^- \rightarrow X_{17}) \simeq 5 \times 10^{-6} Br(e^+e^- \rightarrow \gamma \gamma)$
- $\Gamma_V = 0.5 \left(\frac{g_V}{0.001}\right)^2$  eV for the vector case

The spin-parity selection rules  $J_* = L \oplus J_0 \oplus J_X$  and  $P_* = (-1)^L P_0 P_X$  are required to identify the nature of the new mediator

<u>As proposed by J. Feng in Phys.Rev.D 102 (2020) 3, 036016</u>

| $N_*$                    | $J^P_*$ | Scalar X17   | Pseudoscalar X17 | Vector X17        | Axial Vector X17             |
|--------------------------|---------|--------------|------------------|-------------------|------------------------------|
| $^{8}$ Be(18.15)         | $1^{+}$ | ×            | $\checkmark$     | $\checkmark$      | $\checkmark$                 |
| $^{12}C(17.23)$          | $1^{-}$ | $\checkmark$ | ×                | $\checkmark$      | $\checkmark$                 |
| ${}^{4}\text{He}(21.01)$ | $0^{-}$ | ×            | $\checkmark$     | ×                 | $\checkmark$                 |
| ${}^{4}\text{He}(20.21)$ | $0^+$   | $\checkmark$ | ×                | ✓                 | ×                            |
|                          |         |              |                  | <sup>12</sup> C I | Last results Phys. Rev. C 10 |
|                          |         |              |                  |                   |                              |



#### The actual *A*' space of parameters



#### PADME expects to set limits both in the Vector and ALPs models



#### Pseudoscalar





#### The *X*<sub>17</sub> resonant search on thin target





LNF is actually the only laboratory providing positron beams with  $E_{beam} < 500 \text{ MeV}$ 



$$\sigma_{res} \propto \frac{g_{Ve}^2}{2m_e} \pi Z \,\delta(E_{res} - E_{beam})$$

The resonant production scales only with *Z* and it is much larger than associated and radiative production

To exploit the resonant production, the  $\sqrt{s}$  should be as close as possible to the expected mass:  $E_{res} = \frac{m_{X_{17}}^2}{2m_e}$  $\rightarrow$  A scanning procedure is required

29/03/2023

PADME RunIII - ALPS2023

11



#### The X<sub>17</sub> resonant search on thin target



ХŶ Хð

Analysis strategy: vary the beam energy, fit the background, calibrate the luminosity and look for resonance

The resonance shape is exactly the one of the beam energy distribution: gaussian resonant peak

$$N_{X_{17}}^{perPoT} \simeq \frac{g_{V_e}^2}{2m_e} \ell_{tar} \frac{N_A \rho Z}{A} f(E_{res}, E_{beam})$$

 $f(E_{res}, E_{beam})$  is the beam spread  $\rightarrow$  gaussian distribution with spread  $\delta E$ 

Main background is from Bhabha scattering and  $\gamma\gamma$ -production. It will be fitted directly from the data



Improvements to the set-up are required!



Darmé et al. Phys. Rev. D 106, 115036

29/03/2023

PADME RunIII - ALPS2023



### The expected Standard Model background



- $\sigma_{Bhabha} = \sigma_{s-ch} + \sigma_{t-ch}$  and processes simulated only at LO with **CalcHEP**
- Beam condition:  $N^{PoT} = 2 4 \times 10^{11}$  and  $E_{res} = 282 \text{ MeV} \rightarrow \sqrt{s} = 17 \text{ MeV}$
- $X_{17}$  production mechanism is assumed to have the same acceptance of Bhabha *s*-channel
- Cuts on both final state particles on the azimuthal angle and energy

Resonant search for the X17 boson at PADME <u>Phys. Rev. D 106, 115036</u> Luc Darmé,<sup>1, \*</sup> Marco Mancini,<sup>2, †</sup> Enrico Nardi,<sup>3, ‡</sup> and Mauro Raggi<sup>4, §</sup>

| $g_{V_{\rho}} = 2 \times 10^{-1}$ and $\delta E = 1.4$ Me |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| BG process                                     | No. of Ev.        | No. of Ev. in Acc.  | Acc.  |
|------------------------------------------------|-------------------|---------------------|-------|
| $e^+e^- \rightarrow e^+e^-$ (t- ch.)           | $5.4 \times 10^7$ | $6.9 \times 10^{4}$ | 0.13% |
| $e^+e^- \rightarrow e^+e^-$ (s- ch.)           | $3.2 \times 10^4$ | $6.4 \times 10^{3}$ | 20%   |
| $e^+e^-  ightarrow \gamma\gamma$               | $2.9 \times 10^5$ | $1.3 \times 10^{4}$ | 4.5%  |
| $e^+e^- \rightarrow X_{17} \rightarrow e^+e^-$ | 1250              | 250                 | 20%   |





### The expected phenomenological limits

Using toy MC and geometrical acceptance, we obtained expected limits both on:

- Vector model, covering almost the entire free parameter space
- Pseudoscalar model, in the case of an ALPs decaying into leptons only.





Darmé et al. Phys. Rev. D 106, 115036

PADME RunIII - ALPS2023



### The Run III experimental set-up



- Turned off the dipole B-Field to detect both final state particles with ECal
- Added ETagger detector of 5 mm thick plastic scintillator in front of ECal to distinguish  $e^{\pm}$  from  $\gamma$ .
- 200 MeV  $\leq E_{beam} \leq$  400 MeV positron beam
- Removed the SAC and installed a TimePix3 beam monitor and a LeadGlass detector (10.5  $\times$  10.5  $\times$  37 cm<sup>3</sup>)





#### The data collected during Run III



16

Total amount of data collected ~  $6 \times 10^{11} PoT$ , i.e. ~  $10^{10} PoT$  per  $\sqrt{s}$  point:

- 47 invariant mass points in the beam energy range 260 MeV <  $E_{beam}$  < 300 MeV and  $\delta E_{beam} \simeq 0.75$  MeV
- 6 points out-of-resonance: 5 points below and 1 above
- Bunch length  $\Delta t_{bunch} \simeq 200$  ns and  $N_{bunch}^{PoT} \simeq 2500$
- Beam intensity reduced  $\times$  10 with respect to Run II  $\rightarrow$  lower pile-up BG





#### The data collected during Run III



Using kinematic relation between  $E_{\gamma}$  and  $\theta_{\gamma} \rightarrow$  very good signal-BG separation



Recently, we updated the Toy MC introducing the correct experimental parameters. With respect to preliminary predictions, the BG decreases, while the signal increases

| Process                                        | # of Ev.           | # of Ev. in Acc. | Acc.  |
|------------------------------------------------|--------------------|------------------|-------|
| $e^+e^- \rightarrow e^+e^- (t - \text{ch.})$   | $5.4 \cdot 10^{7}$ | $4.3 \cdot 10^4$ | 0.08% |
| $e^+e^- \rightarrow e^+e^- (s - \text{ch.})$   | $3.2 \cdot 10^4$   | $4.3\cdot 10^3$  | 13.6% |
| $e^+e^- \rightarrow e^+e^-$ (full)             | $5.4 \cdot 10^{7}$ | $3.9\cdot 10^4$  | 0.07% |
| $e^+e^- \to \gamma\gamma$                      | $2.9 \cdot 10^5$   | $8.7\cdot 10^3$  | 3%    |
| $e^+e^- \rightarrow X_{17} \rightarrow e^+e^-$ | 2600               | 350              | 13.6% |

$$g_{V_e} = 2 \times 10^4$$
 and  $\delta E = 0.75$  MeV



#### The points out-of-resonance



Measure the cross section below and above the resonance:

- 5 points with  $N^{PoT} \sim 10^{10}$  each and 205 MeV  $\leq E_{beam} \leq 212$  MeV
- 1 point with  $N^{PoT} \sim 2 \times 10^{10}$  and  $E_{beam} = 402$  MeV
- Below the resonance the  $X_{17}$  production is kinematically not allowed and above is suppressed

Can use this dataset to:

- Compare data and MC predictions
- Study the Standard Model background
- Measure Standard Model cross-section with no eventual  $X_{17}$  enhancement
- Tune the search technique
- Establish luminosity measurement precision



### **Analysis strategies**



Experimental quantities :  $N(e^+e^-)$ ,  $N(\gamma\gamma)$ ,  $N(e^+e^- + \gamma\gamma)$ ,  $N^{PoT} \rightarrow$  Different observables  $\frac{N(e^+e^-)}{N^{PoT}} \text{ vs } \sqrt{\text{s}}$ 

- Accessible only if  $\varepsilon_{tag}(\gamma) > 95\%$
- Need to control systematic errors from PID and *N*<sup>*PoT*</sup>

 $\frac{N(e^+e^-+\gamma\gamma)}{N^{PoT}} \mathbf{VS} \sqrt{\mathbf{S}}$ 

- No error from PID, but 20% BG increment  $\rightarrow$  significance worsened by 8%
- Need to control systematic errors from acceptances and *N*<sup>*PoT*</sup>
- Observable less theoretically clean

 $\frac{N(e^+e^-)}{N(\gamma\gamma)} \operatorname{VS} \sqrt{\mathrm{S}}$ 

- No error from  $N^{PoT}$  and partially cancellation of systematics from acceptances
- Need high level of control on the PID and mis-identification
- Statistical error affects the normalization  $\rightarrow$  significance worsened by  $\times 3$





### **Conclusions and future prospects**



- PADME's two runs between 2018 and 2020 allowed us to optimise running conditions and detector reconstruction
- We performed the most precise measurement of  $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma))$  below 1 GeV
- Run III completed at the of 2022 and the data analysis is in progress
  - Studying the out-of-resonance points we aim to get low energy cross section measurements of the involved SM processes
  - Relying on the toy MC simulations, we expect to set strong limits on  $X_{17}$  coupling to electrons
  - We aim to get preliminary results both on Vector and Pseudoscalar model by the end of 2023, STAY TUNED!



### **Conclusions and future prospects**



- PADME's two runs between 2018 and 2020 allowed us to optimise running conditions and detector reconstruction
- We performed the most precise measurement of  $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma))$  below 1 GeV
- Run III completed at the of 2022 and the data analysis is in progress
  - Studying the out-of-resonance points we aim to get low energy cross section measurements of the involved SM processes
  - Relying on the toy MC simulations, we expect to set strong limits on  $X_{17}$  coupling to electrons
  - We aim to get preliminary results both on Vector and Pseudoscalar model by the end of 2023, STAY TUNED!

## Thank you for your attention and TURN THE DARK ON!





## **BACKUP SLIDES**

# $\sigma(e^+e^- \rightarrow \gamma\gamma)$ at $\sqrt{s} = 20$ MeV analysis strategy



- Normalization for single photon analysis
- Independent determination of luminosity
- SM Cross-section measurement
- Tag-and-probe method on two back-to-back clusters
  - Exploit energy-angle correlation  $E_{\gamma} = f(\vartheta_{\gamma})$
  - Count tag photons with  $E_{\gamma} f(\vartheta_{\gamma}) \sim 0$
  - Match using  $E_{\gamma 1} + E_{\gamma 2} = E_{beam}$  and count probes
- Single photons selection

NFN

- Subtract background from no target runs
- $E_{\gamma} f(\vartheta_{\gamma}) \sim 0$  and  $m_{miss}^2 \sim 0$











2500

20000

1500

10000

5000

#### The first two runs data taking



Two runs in three configurations since installation in Sept. 2018

- Run Ia (Oct 2018-February 2019)
  - → Secondary  $e^+$  from  $e^-$  on Cu target before the entrance of BTF
- Run Ib (February -March 2019)

→ Primary e<sup>+</sup> converted immediately after the e<sup>-</sup> production in the LINAC beam line

- Run II (Sept 2020-Dec 2020)
  - $\rightarrow$  primary  $e^+$  beam and improved beamline setup





#### A' to invisible signature Run II analysis





Knowing the beam momentum 
$$\underline{p}_{e^+}$$
, compute:  $m_{miss}^2 = (\overrightarrow{p_{\gamma}} - \overrightarrow{p}_{e^+} - \overrightarrow{p}_{e^-})^2$ 



Knowing the beam momentum 
$$\underline{p}_{e^+}$$
, compute:  $m_{miss}^2 = (\vec{p}_{\gamma} - \vec{p}_{e^+} - \vec{p}_{e^-})^2$ 





#### **Background: beam crash**





#### The BTF beam line and PADME







 $(g-2)_e$  Anomaly



- Significant discrepancy in the last two results on the  $\alpha$  determination
- Produce a modified  $(g-2)_e$  exclusion which allows a region of existence of  $X_{17}$





 $\alpha^{-1} = 137.035999206(11).$ 

The uncertainty contribution from the ratio  $h/m(^{87}\text{Rb})$  is  $2.4 \times 10^{-11}$  (statistical) and  $6.8 \times 10^{-11}$  (systematic). Our result improves the

#### https://www.nature.com/articles/s41586-020-2964-7

experimental measurement  $a_{e,exp}$  (ref.<sup>9</sup>) gives  $\delta a_e = a_{e,exp} - a_e(\alpha_{LKB2020})$ = (4.8 ± 3.0) × 10<sup>-13</sup> (+1.6 $\sigma$ ), whereas comparison with caesium recoil measurements gives  $\delta' a_e = a_{e,exp} - a_e(\alpha_{Berkeley}) = (-8.8 \pm 3.6) \times 10^{-13}$  (-2.4 $\sigma$ ). The uncertainty on  $\delta a_e$  is dominated by  $a_{e,exp}$ .

<sup>29/03/2023</sup> 



### The protophobic vector model



Feng et al. proposed some BSM models that describe the <sup>8</sup>Be and <sup>4</sup>He anomalies basing on spin-parityand angular momentum conservation lawsI. Feng et al, Phys.Rev.D 102 (2020) 3, 036016



Protophobic vector boson  $J_{X17}^P = 1^-$ 

Protophobia is needed to consider the limitations imposed by the NA48/2 experiment determined by the  $\pi^0 \rightarrow \gamma e^+ e^-$  observation

The NA48/2 collaboration, Phys. Lett. B, 746:178–185

PROTOPHOBIA: the X17 coupling with pions and protons must be suppressed to satisfy all of the experimental constrains



27

PADME RunIII - ALPS2023



#### ETag test set-up



The aim ias to evaluate the efficiency and the light output on different position of an ETag slab.

- Single ETag slab (BC408 0.5x4x66 cm<sup>3</sup>) readout on each side by four 50  $\mu$ m SiPMs  $\rightarrow$  8 readout channels
- Source: cosmic rays
- Trigger: AND of two BGO fingers (ECal) placed over and under the DUT and crossed (discriminator thresholds 30 mV)
- Acquisition: CAEN's V1742 sampling ADCs, signals digitized at 2.5 GS/s w/out zero suppression
- 7 different position scanned  $\rightarrow$  7 different runs







#### Toy MC – What is currently considered



- $\sigma_{Bhabha}^{full}$  considering the interference term and exchanging Z boson diagrams
- $\sqrt{s} = 17 \text{ MeV} \rightarrow E_{beam} = 282 \text{ MeV}$  with spread  $\sigma(E_{beam}) = 0.7 \text{ MeV}$
- Target-ECal distance  $\Delta Z = 3720 \text{ mm}$  (adding ETag)
- The energy of *t*-channel final state electron is required to be  $E_{e_{t}} > 1$  MeV to regularize the IR divergence
- Geometry and energy Cuts on both particles (clusters):  $90 \text{ mm} < R_{max} < 270 \text{ mm} - E > 100 \text{ MeV}$
- **PADME magnet shadow** is included in the acceptance





## Toy MC – What is still missing



- Take into account the broken ECal Scintillating Units and the inefficiency of the outermost ones
- Take into account all of the experimental effects with the full MC
- Consider  $\sigma_{full} = \sigma_{full}(\sqrt{s})$  and  $\alpha_{EM} = \alpha_{EM}(\sqrt{s})$  as 'running' parameters
- Simulate the NLOs with a more sophisticated software to improve the prediction of the theoretical cross-section
- Evaluate  $\sigma_{SM}$  only in the angular range of the experiment

The red lines represent the current radial cuts, so studying the events in that Scintillating Units we are not actually able to reconstruct correctly a cluster

