Searching X17 with positrons at PADME

Venelin Kozhuharov

for the PADME collaboration

Sofia University* & LNF-INFN

Shedding light on X17, 6-8 September 2021 Centro Ricerche Enrico Fermi

08.09.2021

* partially supported by BNSF: KP-06-D002_4/15.12.2020 & LNF-SU 70-06-497/07-10-2014

Outline

PADME @ LNF

- **Present status**
- Prospects
- Conclusions

Material from various sources used, mainly FFF

Coupling to SM

PRL 126 (2021) 14, 141801

BNL g-2

FNAL g-2

-()

 p^+

ATOMKI PAI

LNF, INFN

where colliders were born ...

DAΦNE complex

Physics case of PADME

 e^+

Positron Annihilation into Dark Matter Experiment

PADME detectors

Data taking

- PADME commissioning and Run-1 started in Autumn 2018 and ended on February 25th
 - \sim ~7 x 10¹² positrons on target recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks

2020 era – RUN 2: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with $O(5x10^{12}) e^+$ on target

Active target

Calorimeters

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation: 50 100 µm black tedlar foils

- Calibration at several stages:
 - BGO + PMT equalization with ²²Na source before construction
 - Cosmic rays calibration using the MPV of the spectrum
 - Temperature monitoring

Small Angle Calorimeter (SAC)

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: 3 × 3 × 14 cm³
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

Recorded bunch

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at $E_{beam} = 550 \text{ MeV}$):
 - **PVeto**: positrons with 50 MeV $< p_{e^+} < 450$ MeV
 - **HEPVeto**: positrons with 450 MeV $< p_{e+} < 500$ MeV
 - **EVeto**: electrons with 50 MeV $< p_{e+} < 450$ MeV
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

11.33

Custom SiPM electronics, Hamamatsu S13360 3 mm. 25µm pixel SiPM Differential signals to the controllers, HV, thermal and current monitoring

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T_0 calculation better than 1 ns

Detector performance

MC simulations

GEANT4 based Dedicated generators for annihilation channels

6970493

-0.09616

38.97 / 20

0.006732

3999 ± 34.2

11.33

- Detailed beam description •
- Detector and passive material described to present best knowledge
- Simulation complexity vs • speed

Running conditions

- 2020 data taking with optimized beam
 - Beam induced
 background decreased
 by a factor of at least 5
 - Optimized bunch length
- Improved calorimeter calibration
- EVeto & PVeto timing calibration performed

PADME SM physics

PVeto_Clusters.fClus.fChannelId **RUN I secondary beam RUN I primary beam RUN II primary beam** PADME preliminary PVeto_Clust PVeto channel # SAC Energy [MeV] energySACVsChIdPVeto_Clus_inTime_1ns_thr1MeV Entries 67.89 Mean x 224.1 Mean y 20.69 RMS x RMS y **PADME** preliminary PVeto channel

PADME new physics channels

• Dark photon A e e е A` e⁺ -^//γ e^+ • ALPs e^{-} - Production similar to A` ·∕·∕·∕ a - Primakoff production arXiv:2012.07894 a e^+ • Light scalar coupling to A` arXiv:2012.04754 - Associate productx`x`ion of A` and h` - h` decays into A`A` if $m_{h^{\times}} > 2m_{A^{\times}}$ $\sim\sim\sim\sim\sim\sim\sim$ A` → e⁺e⁻, Mary N

Physics case of PADME

10⁻⁹ 10⁻³

10-2

 $M_{A'}$ (GeV/c²)

10-1

• Limited parameter space

۲

- Depending on the nature of X17
- Nominal PADME technique accounts for both decaying and invisible new particles
 - With non-zero background contribution, detector performance verification and control regions
 - Expecting reach with present dataset: $\epsilon^2 \sim X*10^{-6}$
 - Covering partially the vector case

Dedicated X17 run @ BTF

Resonant production of X17

man A

Phys.Rev. D97 (2018) no.9, 095004

- Similar physics observables as in the ⁸Be and ⁴He experiments ۲
 - 2 leptons in the final state
 - Kinematics properties determined by the mass of the X particle (2 body decays)
 - Beam energy at resonance: ~282.779 MeV

Present limiting factors

- Present PADME setup is not optimized for the full reconstruction of charged final states of X particle
 - Charged particle detectors are rather hodoscopes than real spectrometers
 - Single plane, coordinates from the full detector position + scintillation bar #
 - Momentum of the impinging particle infered assuming that the charge particle originates from the target with momentum along the beam axis
- A possible path could be analysis based on the full event topology than on the reconstruction of kinematical properties
 - Fired scintillators in the PVeto and EVeto, signals in other detectors, etc
 - Machine learning techniques exploiting the full event information
- Duty cycle and positron statistics LINAC delivers 49 bunches per second)
 - Time resolution of the order of 1 ns both for charged particles and for ECAL
 - $\sigma(t) \sim O(100 \text{ ps})$ for SAC
 - Hit multiplicity and matching limits the number of positrons to O(100) e^+ per 1 ns
 - Bunch length: 200 ns 300 ns \rightarrow 20k 30k e⁺ on target per bunch
 - With a non negligible background, used to control the detector performance
- Reconstruction of the interactions of each single beam positron \rightarrow zero background experiment
 - Limit the beam intensity to O(100) positrons per bunch
 - Loose 2 orders of statistics, but gain in sensitivity due to much lower background
 - Precise beam control necessary
 - Still unavoidable physics backgrounds $e^+ + N \rightarrow e^+ + N + \gamma^* \rightarrow e^+ + N + e^+ + e^-$; $e^+ + e^- \rightarrow \gamma^* \rightarrow e^+ + e^-$
- Scan in beam energy and follow the change of: rate/hits multiplicity/total energy, something else?

Si Pixel detectors: beam control and more

MAPS @ PADME

- MIMOSA-28 sensor, mounted on a custom PCB and heat transfer support
- Operated in vacuum!
 - Cooled by 2 Peltier elements, coupled in series
 - $T_{chip} T_{copper} = 10^{\circ}C$

MIMOSA as X17 target?

- Higher Z material (relevant or no?)
- 50 um, few (up to 4) can be placed on the arm
- Diamond target beam multiplicity limit > 5000 e⁺/bunch
- MIMOSA beam multiplicity limit: < 1000 e⁺/bunch

TimePix3 @ PADME

- Placed at the beam exit window
- 12 sensors arranged in 2x6 matrix
- 256x256 pixels per sensor
- Time and position of each positron
 - Beam geometry, quality, profile

Options for the near future

From P. Valente, FFF

• Assuming PADME remains at BTF and using the present beam line

Sensitivity scales as \sqrt{N}

Type of upgrade	Time scale	Pulse length	Maximal energy	PoT per year (100 e⁺ per ns)
Present setup	NOW	300 ns	490 MeV	1.5 x 10 ¹³
Detuned SLED	2 years	2 µs	300 MeV	1014
LLRF modulation	2 years	800 ns	400 MeV	4 x 10 ¹³

• Using the existing rings as pulse stretchers

	Type of upgrade	Time scale	Pulse length	Maximal energy	PoT per year (100 e⁺ per ns)
PADME @ Main ring	ES septum (or crystal), M septum, extraction line, injection	3-4 years	2 ms	510 MeV	2x10 ¹⁶
PADME @ Damping ring	Extraction line (crystal)	3-4 years	60 µs	510 MeV	3x10 ¹⁵

Using any of the existing rings increases the sensitivity by order(s) of magnitude

Conclusions

- PADME has collected about 5x10¹² PoT with primary positron beam
- Data quality improved with the understanding of the conditions
- Detectors performed as expected (and sometimes better)
- Data analysis is ongoing

With present data set expected sensitivity to X17 – down to $\epsilon^2 \sim \text{few*10}^{-6}$

- Discussions on future options ongoing
- Immediate possibilities (NOW), short scale (couple of years), near future (few years)
- Options for lower intensity runs may allow to trace each single beam positron and lead to zero background search, sensitivity will scale as 1/N