

Paolo Valente – INFN Roma

Searching light dark matter particles in positrons annihilations

WE-Haraeus-Seminar - June 9th, 2021

Dark sector

Lack of WIMPs + thermal DM = dark sector

But we also have anomalies in the MeV-GeV range:

- g_{μ} -2 recently confirmed to 4.2 σ
- ⁸Be and **now also ⁴He**

E_p	IPCC	B_x	Mass	Confidence
(keV)	$\times 10^{-4}$	$\times 10^{-6}$	(MeV/c^2)	
510	2.5(3)	6.2(7)	17.01(12)	7.3σ
610	1.0(7)	4.1(6)	16.88(16)	6.6σ
900	1.1(11)	6.5(20)	16.68(30)	8.9σ
Averages		5.1(13)	16.94(12)	
⁸ Be values		6	16.70(35)	

What is a dark sector?

What we know

- Standard model only includes <20% of the matter in the Universe
- Dark matter interacts gravitationally

What we don't know

- What is **dark matter** made of?
- How dark matter interact, **if it does**, with SM particles?
- What's the **portal interaction** DM uses?
- Does one (or more) **new dark force** exist?
- How complex is the dark sector spectrum?

Dark sector candidates

Fixed-target positrons annihilations

With e⁺ beam 3 production mechanisms allowed:(a) A'-strahlung, same as electrons

Two additional mechanisms in e⁺ beams

(b) Associated production $O(\alpha^2)$

$$\sigma_{nr} = \frac{8\pi\alpha^2}{s} \left[\left(\frac{s - m_{A'}^2}{2s} + \frac{m_{A'}^2}{s - m_{A'}^2} \right) \log \frac{s}{m_e^2} - \frac{s - m_{A'}^2}{2s} \right]$$

(c) Resonant annihilation $O(\alpha)$

$$\sigma_{\rm res}(E_e) = \sigma_{\rm peak} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4}$$

$$\sigma_{\text{peak}} = 12\pi/m_{A'}^2$$
$$\Gamma_{A'} = \frac{1}{3}m_{A'}\varepsilon^2\alpha$$

Detector

The detectors have been optimized for the invisible decays of a dark photon, in particular for rejecting the Standard Model backgrounds

Detector

Signatures at PADME

Dark photon (*A'*):

- $e^+e^- \rightarrow \gamma A'$
- Dark photon invisible decay, missing mass search (main channel)
- $e^+e^- \to \gamma A' \to \gamma e^+e^-$
- Visible decay, only for short-lived A'
- Bump hunt possible by computing missing mass against recoil γ

 $e^+e^- \rightarrow A' \rightarrow e^+e^-$

- Direct annihilation followed by visible decay
- Very narrow, need to know the mass in advance to exploit the resonance

ALP (A^0) : $e^+e^- \rightarrow \gamma A^0$ • Invisible decay, same A' signature $e^+e^- \rightarrow \gamma A^0 \rightarrow \gamma \gamma \gamma$ (visible) $e^+e^- \rightarrow \gamma A^0 \rightarrow \gamma e^+e^-$ (visible)

Dark Higgs (h') $e^+e^- \rightarrow A' h' \rightarrow A' A' A' \rightarrow 3(e^+e^-)$

• Requires $m_{h'} \ge 2m_{A'}$

Phys. Rev. D 79 (2009) 115008, HEP 04 (2021) 163

Signatures at PADME

Standard Model channels

(cross sections never measured around 20 MeV)

- Pure photon final state: $e^+e^- \rightarrow \gamma \gamma [\gamma]$
- Background to the main channel
- ~10⁷ [10⁴-10⁵] candidates/year
- By-product of luminosity and A' invisible search
- Needed to compute absolute calorimeter energy scale
- 3γ need to be calculated and measured precisely

Mixed final state: $e^+e^- \rightarrow e^+e^- \gamma$; $e^\pm N \rightarrow e^\pm N\gamma$

Signatures at PADME

Standard Model channels

(cross sections never measured around 20 MeV)

Pure lepton final states:

 $e^+e^- \to e^+e^-$

- Can be used as luminosity reference to cross-check target and TimePix
- Huge statistics but may have problems with pile-up
- Background to visible channel

 $e^+e^- \to 3(e^+e^-)$

- Unknown SM cross section not trivial to compute (too many diagrams)
- May be measured or not due to acceptance issues (too low momentum)
- Background to dark Higgs

Charged tracks at PADME

[Radiative] Bhabha: $e^+e^- \rightarrow e^+e^-$ [γ]

Visible dark photon decays: $e^+e^- \rightarrow [\gamma]A' \rightarrow [\gamma]e^+e^-$

- The electron and positron «spectrometers» are actually veto detectors: no vertexing capability
- In case of detached vertex the momentum determination from the hit position will be wrong

Integrated luminosity

Run I with secondary e+, 530 MeV, produced on the beam-test facility degrader: Nov. 2018-Feb. 2019. Short test at end of Run I (Mar. 2019) with 490 MeV primary beam.

Primary e+ from LINAC, 430 MeV, from mid July to Dec. 2nd 2020

- Beam commissioning = 1.04.10¹² PoT
- Physics (calibration and test included) PoT = $6.28 \cdot 10^{12}$ (on-line estimation $6.64 \cdot 10^{12}$)

PADME physics **Run II**: 15/09/2020 → 26/11/2020:

• PoT = $5.58 \cdot 10^{12}$ (to be refined with data quality) $\rightarrow 1.12 \cdot 10^{11}$ PoT/day

Positron beam 2020 data taking

Positron beam, single run

Beam background

50

20

40

60

80

of cluster in ECal

3000

9.182

3.119

experiment vacuum is an important source of beam energy spread (converted in transverse offset by dispersion in dipoles)

Run2 primary beam, new mylar window moved upstream

Much reduced background, easy to identify SM processes

Beamline simulation

Detailed MC of the final 15 m of the beam-line allowing realistic simulations of beam-related background

Beamline simulation vs real world

New implementations:

- Mylar/Be window thickness
- Quadrupoles and dipoles currents
- Collimators aperturee
- Initial beam parameters

Optimization of the gradient for one of the quadrupoles of the beam-line (Q3): • best from simulation = 3.7 ± 0.2

• value in use at 07/2020 = 3.83

Independent beam energy estimation

Using:

- the beamline and PADME MC (including the PADME magnetic field map)
- a measurement of the beam position at the target and at the TimePix3 we estimated the beam energy independently from the beam-line setting

 $E_{BTF}(beam) = 431.6 \text{ MeV}$ $E_{PADME}(beam) = 433.0 \text{ MeV}$

0.33% difference

Active target

- Large size thin diamond: 1 cm \times 1 cm \times 100 μ m (CCD=17um)
- Laser made 16X+16Y graphitic strips: CSN5 DIAPIX spin-off
- Y strips wire bonding Aluminum on Graphite: INFN Perugia
- X strips conductive epoxy
- Remotely controlled In&Out from beam in vacuum
- Stable operation in vacuum since first installation in Sept 2018:
 - no HV discharge, no lleakage drifts, no change in response
- Good response uniformity in position
- After calibration, used for BTF beam commissioning and beam on-line monitoring
- Provides Positron On Target (POT) and XY beam profiles on a bunch-by-bunch basis

Beam measurements with the active target

RUN I in 2019 not focused beam: all FE channels in linear regime

RUN II in 2020 focused beam: FE channel of hottest strip saturated

Bremsstrahlung in eVeto

γγ events in ECal, single run

Statistic is such to allow to see the $\gamma\gamma$ peak in single runs.

Fitting the spectrum we can get the peak value and the energy resolution.

23

E_{γγ} and temperature vs time before corrections

Runs and fit quality selection applied.

$\mathbf{E}_{\gamma\gamma}$ vs temperature correction

Runs and fit quality selection applied plus first 25 days of September excluded: cleaner dataset only to evaluate the correction factors.

 E_{vv} vs Temperature, selected runs

E_{γγ} and temperature vs time after corrections

Runs and fit quality selection applied. $E_{\gamma\gamma}$ is at the right value and the RMS is very small (using a run based energy correction).

γγ event in ECal comparison

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

2 gamma integrated signal/Run

$\gamma\gamma$ event selection and yield extraction

- Coincidence time: $|t_{y1} t_{y2}| < 10$ ns
- $R_{\gamma 1} \in FR (R_{\gamma 2} \in FR)$
- $|x_{CoG}| < 5 \text{ cm } \& |y_{CoG}| < 5 \text{ cm}$

The number of $\gamma\gamma$ is obtained after background subtraction.

Background is estimated using a special run with the target out of beam.

FR = Fiducial Region

e⁺ e⁻ $\rightarrow \gamma \gamma$ cross section measurement strategy

Efficiency determination

- Two photon events in data can be used to assess the single photon reconstruction efficiency in PADME: an annihilation-like photon allows to probe the efficiency on the opposite hemisphere
- $\epsilon(\phi_i, R_i)$ efficiency map measured on data and validated on a clean simulation sample (CalcHEP)

Correcting the yield

- By applying scale factors $\epsilon(data|\phi_i,R_i)/\epsilon(MC|\phi_i,R_i)$ to the simulation
 - Needs a good simulation
- By scaling the yield in data for single photon efficiency and event acceptance
- The two methods are validated on simulation and give consistent results
- Goal is a 5-10% precision measurement

Dark Higgs in 6 leptons final states

0.01

0.00

0.02

0.04

0.06

0.10

0.08

SM 6 leptons ~1500 pb 200 events/10¹³ POT

Future perspectives

A few proposals to increase the PADME (or a similar experiment) potential:

- Modify the LINAC in order to get [even] longer pulses
 - Implies some hardware modification on LINAC RF, but limited by modulator and gun pulser to $<5 \ \mu s$
 - At the price of a lower energy: could impact X17 searches (need to go above 300 MeV)
 - Allows using PADME in its current location

- Use the positron main ring of the DAFNE collider as pulse stretcher of the LINAC

- Using the synchrotron loss to drive the $n + \frac{1}{3}$ resonance: $\frac{\Delta E}{E}$ fixes the spill length
- Requires new electrostatic (ES) and magnetic (M) septa (close to one of the two rings' crossings)
- An extraction line towards the experiment has to be realized (in the collider hall)
- Also a direct injection line into the main ring is required

- Use the damping ring (DR) as pulse stretcher of the LINAC

- Similar scheme as for extraction from the main ring, with additional pros and cons
 - Shorter spill due to length=1/3 L_{MR} and smaller acceptance when trying to get large β at ES
 - Extraction (M) septa (2°+34°) already existing
 - Much simpler (and cheaper to run) wrt main ring; beam from LINAC already comes with large $\frac{\Delta E}{r}$
 - DR inside a small building; need to find a **location for the experiment**. This drives the **repetition rate** due to the configuration of pulsed magnets of the transfer-lines.

More exotic options:

- Crystal channeling is an interesting alternative to the ES septum (non-local extraction)
- "RF knock-out" as used in proton machines (e.g. using a kicker)

Future perspectives

Accelerat	tor	Beam-line	Upgrades	Time scale	Pulse length	Maximum energy⁺	Positrons on target/year#	
LINAC	BTF-1	none	Now	300 ns	490 MeV e+	3·10 ⁴ ×49×10 ⁷ =1.5·10 ¹³	Present configuration	
		De-tuned SLED's	2 years	3 μs	300 MeV e+	3.10 ⁵ ×49×10 ⁷ =1.5.10 ¹⁴		
		LLRF modulation	2 years	800 ns	420 MeV e+	8.10 ⁴ ×49×10 ⁷ = 4.10 ¹³		
Accelerat	for	Beam-line	Upgrades	Time scale	Pulse length	Maximum energy⁺	Positrons on target/year#	
UNAC		ES septum [or crystal] + M septum + extraction line + direct injection	3 years	0.45 ms	510 MeV e+	4.5.10 ⁷ ×49×10 ⁷ =2.10 ¹⁶		
+ main ring* POSEYDON				POSEYDON	2 ms	300 MeV e+	2.10 ⁸ ×49×10 ⁷ =10 ¹⁷	
* Wigg	glers off	[†] Energy range with a circulating positron beam: probably 250-520 MeV						
Accelerat	tor	Beam-line	Upgrades	Time scale	Pulse length	Maximum energy⁺	Positrons on target/year#	
LINAC + accumulator	tbd	Extraction line [+		60 (120) μs	510 MeV e+	6.10 ⁶ ×49×10 ⁷ =3 (6).10 ¹⁵	At 2 Hz: 1 (2).1014	
		crystal] [+ Pulsed dipoles]	3 years	0.3 (0.6) ms	300 MeV e+	3.107×49×107=1.5 (3).1016	At 2 Hz: 0.6 (1.2).1015	
				# Assumin				
				[
				[[

Summary (100e+/ns current PADME intensity):

- LINAC+ BTF : ~1.5 10¹³ POT/Y
- LINAC+DA Φ NE ring : ~ 2.0 10¹⁶ POT/Y
- LINAC+Accumulator : ~ 1.0 10¹⁵ POT/Y (limited by injection/extraction rep. rate)

Sensitivity scaling: dark photon

Sensitivity scaling: ALPs

Conclusions

- PADME Run II data taking conditions (with primary beam) are clearly better than the Run I conditions
- A reliable Monte Carlo beamline simulation is available
- PADME collected 5.58.10¹² PoT, about one half of the planned statistics, during the pandemics
- After the Run II stop in December and the carrying out of some tests the collaboration started an intense detector study and analysis campaign.
- Run II data analysis is ongoing: $e^+e^- \rightarrow \gamma\gamma$ (interesting by itself and a step towards the invisible dark photon result)
- Studies on how to significantly increase the luminosity and improve the background/pile-up by further diluting the LINAC beam pulses are promising

