

Istituto Nazionale di Fisica Nucleare

Fotone Oscuro - la ricerca

Gabriele Piperno - LNF

CSN1 - Roma - 20 dicembre 2017

Il problema della Materia Oscura

Evidenze sperimentali:

- galassie a spirale
- Radiazione Cosmica di Fondo
- lensing gravitazionale
- ammassi di galassie
- Nucleosintesi da Big Bang
- strutture a larga scala

Atomi 5% Materia Oscura 27% Energia Oscura

Proprietà:

- stabile (vita media ~ età dell'universo)
- fredda (non relativistica)
- interazione gravitazionale
- non barionica

Questioni irrisolte:

- natura della Materia Oscura (MO)
- interazioni col MS
- esiste un Settore Oscuro (SO)?
- forze del SO?

Fotone Oscuro

Possibile soluzione alla elusività della MO: MO non interagisce direttamente con MS, ma per mezzo di "portali".

Modello più semplice aggiunge una simmetria U(1) di gauge e il suo bosone: il Fotone Oscuro (FO) A'

 particelle MS neutre sotto questa simmetria

 il nuovo campo si accoppia al MS con carica effettiva εq

In aggiunta A' può spiegare interamente o parzialmente (dip. dal modello) la discrepanza tra teoria e misura su (g-2)_µ

Fotone Oscuro da interazioni leptoniche e+/e-

Nelle collisioni e+/e- il FO può essere prodotto in 3 modi principali:

Fotone Oscuro da interazioni adroniche

Nelle collisioni adroniche (includono anche gli ioni pesanti) il FO può essere prodotto in 2 modi principali:

- Tipicamente protone considerato come particella senza struttura (nelle interazioni con alto momento trasferito c'è la possibilità di bremsstrahlung da quark)
- Al momento non esistono strumenti universalmente accettati il per calcolo delle sezioni d'urto e delle distribuzioni di impulso delle particelle nello stato finale

È fondamentale usare fasci sia leptonici sia adronici per sondare FO leptofobici o leptofilici

Decadimenti del Fotone Oscuro

Decadimenti visibili

Se non esiste MO con $m_{MO} < m_{A'}/2$:

- A'→SM (visibile)
 - fino a $2m_{\mu}$, BR(e⁺e⁻) = 1 (se $m_{A'} > 2m_e$)

Vita media A' proporzionale a: $1/(\alpha\epsilon^2 m_{A'})$

Decadimenti invisibili

Se esiste MO con $m_{MO} < m_{A'}/2$:

- A' \rightarrow DM (invisibile) con BR $\simeq 1$
- decadimenti MS soppressi di un fattore ϵ^2

Vita media A' proporzionale a:

 $1/(\alpha_D m_{A'})$

Status della ricerca nel visibile

Tecniche:

beam dump (bremsstrahlung)

 rivelazione prodotti di decadimento di A' dopo bersaglio alto z (produz. A') + schermo (assorb. MS)

bersaglio fisso (bremsstrahlung, annichilazione)

 ricerca picchi in spettro massa invariante, vertici isolati

- decadimento mesoni
 - solo se A' si accoppia con quarks
 - rianalisi di vecchi esperimenti

(g-2)_µ escluso (nel modello più semplice), ma ancora interesse per questo tipo di ricerca. In particolare anomalia del ⁸Be.

μ

Stato della ricerca nell'invisibile

Tecniche:

- diffusione MO (bremsstrahlung)
 - rivelazione MO prodotta con urti
 - necessari 4 parametri (ε,m_{A'},m_{MO},α_D)

- ricerca energia/momento mancante (bremsstrahlung)
 - processo cinematicamente non vincolato
 - si osserva energia/momento minori di quanto atteso
- ricerca massa mancante (annichilazione)
 - processo cinematicamente vincolato
 - no assunzioni su catena di dec. di A'

Il rivelatore di PADME

Run approvato

Tecnica sperimentale: ricerca di massa mancante nella reazione $e^+e^- \rightarrow \gamma A'$

Approccio sperimentale per la ricerca nell'invisibile

- energia e posizione fascio note
- energia e posizione γ misurate (ECAL)

$$m^2_{Miss} = (\mathbf{P}_{fascio} + \mathbf{P}_e - \mathbf{P}_\gamma)^2$$

PADME può esplorare in maniera modelindependent la regione fino a $\varepsilon \approx 10^{-3}$ (10¹³ POT) con m_{A'} < 23.7 MeV (E_{fascio} = 550 MeV)

Altra fisica con il rivelatore attuale

Utilizzando il setup attuale:

ricerca Axion Like Particles: stato finale γ γ
variazione energia fascio (se si osserva un effetto, scansione energia intorno a ROI)
ricerca nel visibile: granularità veto e+/e-consente di ricercare A' che decadono nel visibile (breve vita media)

vedi anomalia 8Be

Approccio sperimentale per la ricerca nel visibile

PADME+

Piccole modifiche al rivelatore

• diversi bersagli per ottimizzare spessore e materiale (es. H₂) avvicinarsi ad assenza di fondo

• misure con fascio di e- per controllare fondi e sistematiche

Detecto bersaglio sottile ad alto z (più bremsstrahlung A') • $E_{A'}$ può essere > $\sqrt{2m_e E_{beam}}$ Target • E_{A'} non nota (cinematica non chiusa) 0.5 mm solo dec. visibili sono interessanti bersaglio W Calcoli preliminari con 10¹⁸ EOT danno una sensibilità su $\varepsilon^2 \sim 10^{-7}$ nella regione di

bassa massa, che peggiora all'aumentare di m_{A'}

12/18

10-

10⁻⁵

10⁻¹

10

 $M_{A'}$ (GeV/c²)

10⁻¹

10⁻²

 ε_{2}^{2} 10⁻⁶

PADME++

Modifiche a rivelatore, sala sperimentale e linea di fascio (4µs, 1.2 GeV)

Detector

"Dirt"

bersaglio spesso ad alto z

• PADME dump: ricerca dec. visibili

Dump e

 Diffusione di MO su rivelatore (poco probabile) eventualmente con bersaglio/dump attivo

• $E_{A'}$ può essere > $\sqrt{2m_eE_{beam}}$

• E_{A'} non nota (cinematica non chiusa)

Fattibilità sotto studio, problema orincipale: radioprotezione utenti

PADME a DAØNE

Usando l'anello deglii e+ di DAΦNE è possibile allungare il pacchetto fino a 400µs

• 2000× nella statistica (il limite scala 10⁻⁴ $con \sqrt{n_{eventi}}$ 10⁻⁵ • necessari nuovi: (p-2) = 50BABAR favore • setti per estrazione 10⁻⁶ • linea magnetica 10-7 • readout <u></u> • DAQ 10⁻⁸10⁻³ 10-2 10⁻¹ *m*_{A'} [GeV]

PADME in USA

Possibilità di trasportare il calorimetro di PADME nei USA e di sfruttare:

- sale sperimentali più grandi → maggiore distanze tra bersaglio e calorimetro → migliore risoluzione spaziale
- fasci con energia maggiore → sensibilità a masse maggiori
- fasci continui ×10⁴-10⁵ volte la statistica → più statistica a parità di tempo o meno fondi

Wilson Laboratory (Cornell)

- fascio di 6 GeV estratto dall'anello di accumulazione CESR → m_{A',max} = 78 MeV
 bersaglio di Be
- distanza bersaglio/calorimetro $\approx 10 \text{ m}$

Jefferson Laboratory

- fascio di 11 GeV estratto dall'acceleratore
 CEBAF → m_{A',max} = 106 MeV
- bersaglio di C (100 µm)
- distanza bersaglio/calorimetro $\approx 10 \text{ m}$

15/18

PADME in USA

Possibilità di trasportare il calorimetro di PADME nei USA e di sfruttare:

- sale sperimentali più grandi → maggiore distanze tra bersaglio e calorimetro → migliore risoluzione spaziale
- fasci con energia maggiore → sensibilità a masse maggiori
- fasci continui ×10⁴-10⁵ volte la statistica → più statistica a parità di tempo o meno fondi

Wilson Laboratory (Cornell)

 fascio di 6 GeV estratto dall'anello di Entro fine gennaio sarà preparata la richiesta per la costruzione linea di fascio dedicata

Jefferson Laboratory

- fascio di 11 GeV estratto dall'acceleratore
 CEBAF → m_{A',max} = 106 MeV
- bersaglio di C (100 µm)
- distanza bersaglio/calorimetro $\approx 10 \text{ m}$

15/18

Altri esperimenti CSN1 per FO: NA62

Scopo principale: misura del BR (K⁺ $\rightarrow \pi^+ \vee \overline{\nu}$) con precisione del 10%

Utilizzando un beam dump (attraversato da A' + assorbe SM) è possibile ricercare decadimenti del tipo: A' \rightarrow e+ e-, µ+ µ- a valle.

Assumendo 1018 POT da 400 GeV:

produzione:

- decadimento di mesoni
- bremsstrahlung

decadimento nel volume fiduciale:

- tiene in conto l'accettanza geometrica
- assume zero fondo

Altri esperimenti CSN1 per FO: SHiP

Conclusioni

- Il Fotone Oscuro (FO) è predetto in una classe di modelli fisici relativamente giovani e generali che stanno velocemente guadagnando interesse nella comunità MO
- PADME è un esperimento ospitato al LNF che cercherà (primariamente) un FO che decade in "invisibile", collezionando 10¹³ e⁺ su bersaglio entro la fine del 2018, testando in modo model-independent un A' con $\varepsilon \ge 10^{-3}$ e con massa fino a 23.7 MeV (E_{fascio} = 550 MeV)
- Oltre a PADME in CSN1 esistono altri gruppi che si occupano della ricerca del FO con esperimenti di base al CERN che sfruttano fasci adronici: NA62 (in presa dati) e SHiP (a partire dal 2026)
- All'interno dell'INFN sono presenti ulteriori esperimenti (non menzionati) dedicati alla ricerca del FO, afferenti al CSN3: BDX (proposta) e HPS (in presa dati)

Ricerche del Fotone Oscuro

Publishing Approved Proposal

Vista del rivelatore dall'alto (con segnale)

Segnale:

La Beam Test Facility dei LNF

PADME sarà posizionato nella Beam Test Facility dei Laboratori Nazionali di Frascati

	Modalità р (DAФNE	oarassitica in opera)	Modalità dedicata				
	Bersaglio	No bersaglio	Bersaglio	No bersaglio			
Tipologia particelle	e+/e- selezionabile dall'utente	e+/e- dip. dalla modalità di DAФNE	e+/e- selezionabile dall'utente				
Energia [MeV]	25-500	510	25-700 (e+) 25-700 (e-)	250-730 (e+) 250-530 (e-)			
Spread energetico	1% @ 500 MeV	0.5%	0.5%				
Ripetizione [Hz]	10. dipendente dalla n	-49 nodalità di DAΦNE	1-49 selezionabile dall'utente				
Impulso [ns]	10 selez			1.5-40 onabile dall'utente			
Intensità [particelle/bunch]	1-10 ⁵ dipendente dall'energia	10 ⁷ -1.5 • 10 ¹⁰	1-10 ⁵ dipendente dall'energia	10 ³ -3 • 10 ¹⁰			
Flusso medio max		3.125 · 10 ¹⁰	particelle/s				
Dim. spot [mm]		0.5-25 (y) >	< 0.6-55 (x)				
Divergenza [mrad]		1-1	1.5				

- 1 cluster nel volume fiduciale di ECAL
- no particelle nei veto
- no γ nel SAC con $E_{\gamma} > 50~MeV$
- 20-150 MeV < $E_{\gamma} <$ 120-350 MeV (dipendente da $m_{\text{A}'})$

Geometria dei fondi

Annichilazione (+ISR): $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

Bremsstrahlung: $e^+ N \rightarrow e^+ N \gamma$

Bersaglio attivo

Caratteristiche:

- Diamante (basso z, poca brems.)
- Dim.: 20×20×0.05/0.1 mm³
- 16 (oriz.)×16 (vert.) strisce attive di grafite
- $\sigma_{x-y}(\text{posizione fascio}) < 2 \text{ mm}$
- in vuoto con sistema di movimento

24

Risultati rivelatore di test

Calorimetro elettromagnetico (1)

Caratteristiche:

- $\sigma_{\rm E} \simeq (1-2)\% / \sqrt{E}$
 - alta statistica γ
 - contenimento
- risoluzione temporale sul cluster < 1 ns
- risoluzione angolare ≤ 1 mrad
- copertura angolare: [20,93] mrad
- accettanza angolare: [26,83] mrad
- buco centrale per brems. al SAC (più veloce)

Paramete Units:	r: $ ho$ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	Relative output [†]	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	$\frac{650^{s}}{0.9^{f}}$	300^{s} 220^{f}	1.50	36^{s} 4.1^{f}	no	-1.9° 0.1^{f} c
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	$_{0.4}$ \cap
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^{s}	420^{s}	1.95	3.6^{s}	slight	-1.4
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	6^{f} 30^{s} 10^{f}	310^{f} 425^{s} 420^{f}	2.20	1.1^{f} 0.3^{s} 0.077^{f}	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce	e) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

616 BGO 2.1×2.1×23 cm³ @ 3 m dal bersaglio

Calorimetro elettromagnetico (2)

Risultati con una matrice 5×5 di BGO @ BTF

Axion Like Particles a PADME

ALP che decade in invisibile o a lunga vita media in PADME ha la stessa segnatura di un FO:

•1γ

• energia mancante nello stato finale

Nel dec. visibile a $\rightarrow \gamma \gamma$ tutti i modi di produzione possono essere esplorati fino a m_{ALP} ~100 MeV.

Osservabili:

- e⁺ γ γ
- •γγγ

Limiti sulle ALPs che

Anomalia 8Be

Eccitazione con la reazione 7Li(p, y)8Be

 $(\gamma)^{8}Be = 18.2 1^{+}$ $(\downarrow)^{8}Be = 17.6 1^{+}$ $(\downarrow)^{17.6 1^{+}}$ $(\downarrow)^{17.6 1^{+}}$

Eccesso di 6.8σ nella distribuzione angolare di e⁺ e⁻ con massa invariante m = 16.6 MeV

disposizione scintillatori del rivelatore intorno al bersaglio di ⁷Li

Possibile spiegazione: bosone (vettore, preferito) protofobico massivo