

Istituto Nazionale di Fisica Nucleare

First results on the performance of the PADME electromagnetic calorimeter Gabriele Piperno

IPRD 2019 - Siena, IT - October 15, 2019

Dark Photon as Dark Matter problem solution

DM properties:

- stable (half life ~ universe age)
- cold (non relativistic)
- gravitational force
- non baryonic

DM open questions:

- DM nature
- interaction(s) w/ SM
- A whole new dark sector?
- dark sector forces?

Possible solution to the DM elusiveness: DM does not interact directly w/ SM, but only by means of "portals".

The simplest model adds a U(1) gauge symmetry and its boson: the Dark Photon A'

- SM particles are neutral under this symmetry
- new field couples to the SM w/ effective charge so
- SM w/ effective charge ɛq

Dark Sector

Depending on the model, in addition to DM, the A' could (partially) explain the (g-2)_µ discrepancy and the ⁸Be anomaly (see backup) ₂

Dark photon production and decays

In e⁺/e⁻ collisions Dark Photon can be produced in 3 main ways:

Visible decays

If DM particles w/ $m_{DM} \le m_{A'}/2$ do not exist:

- A'→SM (visible) decays
 - up to $2m_{\mu}$, BR(e+e-) = 1 (if $m_{A'} > 2m_e$)

A' lifetime proportional to:

 $1/(\alpha \epsilon^2 m_{A'})$

Invisible decays

If DM particles w/ $m_{DM} \le m_{A'}/2$ exist:

- A'→DM (invisible) w/ (likely) BR ≃ 1
- \bullet SM decays suppressed by a factor ϵ^2

A' lifetime proportional to: $1/(\alpha_D m_{A'})$

3/15

a_D: A' coupling constant to the Dark Sector

, **Α**.

e

The PADME (LNF, IT) approach

A' search in e⁺e⁻ annihilations looking for missing mass (invisible decay) in a kinematically constrained condition

• minimal model dependent assumptions: A' couples to leptons

 can set limits on coupling of any new light particle that can be produced in e⁺e⁻ annihilation: Dark Photon, Axion Like Particles, Dark Higgs 4/15

The detector

Electromagnetic calorimeter (ECal) overview

Features:

- 616 2.1×2.1×23 cm³ scintillating BGO $(\tau_{decay} = 300 \text{ ns})$
- length = $20.5 X_0$
- radius: ≈29 cm
- tedlar foils between crystals (no honeycomb structure) to reduce light crosstalk (see backup)
- 3.45 m from the target
- PMT: HZC XP1911
- angular coverage: [15,84] mrad
- central hole (10.5×10.5 cm²) for Brems.
 to SAC (faster)
- sampling: 1GS/s, 1024 samples
- w/ current gain (15.3 pC/MeV) a single SU sees photons w/ $E_{\gamma} < 511$ keV

Electromagnetic calorimeter pictures

Back view, open

²²Na setup for Scintillating Unit (SU) calibration

ECal HV distribution

HV distribution for all the 616 HZC XP1911 to set SU at 15.3 pC/MeV

HV values stability

Distribution of the HV relative difference for the 135 SU that undergone two measurements, when requiring for 15.3 pC/MeV

Cosmic rays in ECal

The trigger is formed of 2 paddles, each one read by 2 PMTs, one above, one below ECal.

Trigger logic:

set in this way to increase the trigger rate

0

22 23 24 25 26 27 28

12 13 14 15 16 17 18

SUs efficiency using CRs

Vertical CRs charge spectrum MPV in SUs

All cosmic charge distributions are fitted w/ a Landau (for verticality see backup) MPVs map MPVs distribution

Light yield varies w/ temp. (-0.9%/°C) \rightarrow MPVs may vary \rightarrow temperature monitoring ^{13/15}

ECal energy resolution

Energy resolution has been evaluated using a beam w/ a single e⁺ per bunch directly on ECal and applying a simple clusterisation algorithm

Energy resolution at 490 MeV is 12.75/464 = 2.7% (including the beam energy spread)

14/15

already within our goal/L3

expectation

Conclusions

- Dark Photon is predicted by many physics models, that could explain different experimental observations: Dark Matter, $(g-2)_{\mu}$, ⁸Be anomaly
- PADME is an experiment hosted at the Laboratori Nazionali di Frascati searching for invisible Dark Photon decays
- The electromagnetic calorimeter is one of the most important component of the detector
- Scintillating units performances
 - very low threshold $\approx 0.5 \text{ MeV}$
 - good stability w/ variations < 3% (mean value: 0.6%)
 - efficiency (using CRs): ≈100%
- Electromagnetic calorimeter performances
 - gain equalisation at 15.3 pC/MeV from the ²²Na calibration (using CRs): 11%
 - good energy resolution: 2.7% at 490 MeV (including the beam energy spread), even better than prototype results

Don't miss our posters!

I. Oceano: "The performance of the diamond active target of the PADME experiment"
 F. Oliva: "Performance of the charged particle detectors of the PADME experiment" 15/15

First results on the performance of the PADME electromagnetic calorimeter - Gabriele Piperno - IPRD 2019

Dark Photon searches

Visible search status

Techniques:

beam dump (bremsstrahlung)
detection of A' decay products after high z target (A' production) + shield (SM absorption)

- fixed target (bremsstrahlung, annihilation)
 - bump hunt in invariant mass spectrum, displaced vertices
- meson decay
 - only if A' couples w/ quarks
 - old experiments reanalysis

 $(g-2)_{\mu}$ excluded in the simplest model, but still a lot of interest. In particular the ⁸Be anomaly.

Invisible search status

Techniques:

- DM scattering (bremsstrahlung)
 - produced DM detect by scattering
 - 4 parameters needed (ϵ ,m_{A'},m_{DM}, α _D)

- missing energy/momentum search (bremsstrahlung)
 - not kinematically constrained process
 - observed energy/momentum smaller than expected
- missing mass search (annihilation)
 - kinematically constrained process
 - no assumption on A' decay chain

Scintillating material selection

Parameter Units:	$ m : \rho \ g/cm^3$	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	Relative output [†]	Hygro- scopic?	d(LY)/dT $\%/^{\circ}C^{\ddagger}$
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF ₂	4.89	1280	2.03	3.10	6.5	30.7	650^{s} 0.9^{f}	$\frac{300^{s}}{220^{f}}$	1.50	$\frac{36^s}{4.1^f}$	no	-1.9^{s} 0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.5 <mark>1</mark>	621	1.86	3.57	5.6	39.3	30^s 6^f	420^{s} 310^{f}	1.95	3.6^{s} 1.1^{f}	slight	-1.4
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	30^{s} 10^{f}	$\frac{425^s}{420^f}$	2.20	0.3^s 0.077^f	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2 <
LaBr ₃ (Ce)) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

BGO emission spectrum

Crystal procurement

L3 half-endcaps where crystals are...

...taken

Crystal optical properties

After crystal selection the following steps are executed:

- Photosensor removal (mechanically after 48h in acetone)
- Paint removal (w/ water)
- Transmittance measurement
- Annealing
 - $T_{amb} \rightarrow 200 \ ^{\circ}C \ in \ 3 \ h$
 - 200 °C for 6 h
 - 200 °C \rightarrow T_{amb} "natural"
- Transmittance measurement

Everything is performed at CERN at LAB27

Transmittance before annealing

Transmittance after annealing

Crystals cut and polished at SILO (Italy)

They produced identical parallelepipeds starting from different truncated pyramid shapes (L3 endcaps geometry was pointing)

Mechanical tolerances (more stringent limits are set for the square shape)

We performed a quality check at LNF on some crystals, to verify that dimensions are within specification, w/ positive results

HZC XP1911

PMTs test

32 PMTs at a time were tested w/ a LED matrix (one per tube): pulsing the LEDs we see if the PMT works and its response to the light. If results are good, tubes are sent to SILO for gluing.

Mechanics top view

LED driver board

Mechanics for PMTs test

First results on the performance of the PADME electromagnetic calorimeter - Gabriele Piperno - IPRD 2019

Global PMT results

Gluing and painting at SILO

The LNF Beam Test Facility (BTF)

PADME experimental hall is the Beam Test Facility of the Laboratori Nazionali di Frascati (~Rome, IT), the same place where the test beams have been performed.

Beam Test Facility parasitic and dedicated modes

	Parasiti (DAФNE	c mode working)	Dedicated mode					
	W/ target	W/o target	W/ target	W/o target				
Particle species	e+/e- selectable by user	e⁺/e⁻ depending on DAΦNE mode	e+, selectabl	/e⁻ e by user				
Energy [MeV]	25-500	510	25-700 (e+) 25-700 (e-)	250-730 (e+) 250-530 (e ⁻)				
Energy spread	1% @ 500 MeV	1%	1%					
Rep. rate [Hz]	10- depending on	-49 DAФNE mode	1-49 selectable by user					
Pulse duration [ns]	1	0	1.5-40 selectable by user					
Intensity [particles/bunch]	1-10 ⁵ depending on energy	10 ⁷ -1.5 • 10 ¹⁰	1-10 ⁵ depending on energy	10 ³ -3 • 10 ¹⁰				
Max average flux	3.125 · 10 ¹⁰ particles/s							
Spot size [mm]	0.5-25 (y) × 0.6-55 (x)							
Divergence [mrad]	1-1.5							

Calorimeter prototype performance @ BTF

Cosmic ray setups

We performed CR runs w/ 2 different setups:

- 4×3 matrix
- 5×5 matrix w/ 50µm tedlar foils between crystals (see next slides)

Cosmic rays charge spectra (5×5 matrix)

Verticality is obtained requiring that the 5 largest signals are in column

µ passing through

Optical crosstalk without tedlar (4×3 matrix)

Inverse cumulative of the Side events w/o tedlar

1% is reached at ≥100pC

Optical crosstalk with tedlar (4×3 matrix)

Calorimeter mechanical design

ECAL assembly procedure

Vertical CR in and SU efficiency

evaluate efficiency for a SU on the border

BGO thermometers

Positions: Back (rear part of crystal) Side (2 along the crystal side)

- 24 + 16 thermometers:
- Pt1000
- thin film, 10mm tails
- dimensions: 1.2×1.6 mm²
- temperature range: (-50, 500°C)
- self-heating:< 0.5 °C/mW
- thermal response: 0.1 s
- stability: ±0.05%

Active target

Features:

- Diamond (low z, reduced brems.)
- Dim.: 20×20×0.1 mm³
- 19 h. × 19 v. active graphitic strips (1 mm pitch, 0.15 mm interstrip distance, electric resistance ~2.5kΩ)
- 16 h.×16 v. strips are read
- in vacuum w/ movement system
- σ_{x-y}(beam position): 0.6mm

Two IDEAS boards equipped w/ 16 channel AMADEUS chip to readout

Active target operations

The target has been continuously and stably operated since September 2018

000000000

The diamond detector performances measured on situ show excellent beam monitor capability:

- single bunch X and Y beam profiles
- good spatial resolution and linearity w/ charge weighting algorithm
- linear response to beam multiplicity (many calibration runs performed using a lead glass Cherenkov calorimeter)

Timeline trends of the vert. and horiz. beam position and the number of e+ on target are provided by the experiment monitor

Beam profile with target

Strips X3 and X5 are not working: charge linear interpolation using lateral strips (not in this plot)

Small Angle Calorimeter (SAC)

Characteristics:

- σ_E ≃ 10%
- Cherenkov \rightarrow 3-4 ns signals
- angular coverage: [0,20] mrad
- crystal wrapped w/ tedlar (only direct light)

SAC must be sensible to photons over 300 MeV and blind under 100 MeV

Detector top view (w/ signal)

Backgrounds

Largest backgrounds:

- $e^+ e^- \rightarrow \gamma \gamma (\gamma)$
- $e^+ N \rightarrow e^+ N \gamma$
- pile-up

Cuts:

- 1 cluster in ECAL fiducial volume
- no hits in vetoes
- no γ in the SAC w/ $E_{\gamma} > 50~MeV$
- 20-150 MeV $< E_{\gamma} < 120-350$ MeV (depending on m_{A'})

Backgrounds geometry

Annihilation (+ISR): $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

Bremsstrahlung: $e^+ N \rightarrow e^+ N \gamma$

Sensitivity

Based on 2.5 · 10¹⁰ fully GEANT4 simulated 550 MeV e⁺ on target events. Number of BG events is extrapolated to 10¹³ e⁺ on target.

PADME can explore in a modelindependent way the region down to $\varepsilon \approx 10^{-3}$ w/: • m_{A'} < 23.7 MeV (E_{beam} = 550 MeV) • m_{A'} < 27.7 MeV (E_{beam} = 750 MeV) • m_{A'} < 32 MeV (E_{beam} = 1 GeV)