

Searching for light dark matter at accelerators

Mauro Raggi, Sapienza Università di Roma e INFN Roma

Menu 2019 Workshop 1-7 June 2019 Carnegie Mellon University

Mauro Raggi, Sapienza Universita' di Roma

The dark matter problem

Many solutions and open questions. Is dark matter made of new particles?

Is the dark matter a known particle?

Dark matter has a mass.

Dark matter has gravitational interaction.

Dark matter interacts weakly with SM particles.

Dark matter contains one or more stable particles.

Is any particle we know a good dark matter candidate?

Leptons

Higgs

Is the dark matter a known particle?

strong electromagn. unstable

they move too fast (hot dark matter) to form the observed large scale structure

Forces

Dark sectors a possible solution

- Standard model only includes <20% of the matter in the universe</p>
 - We only know dark matter interacts gravitationally
- Many open questions
 - What is dark Matter made of?
 - How dark matter interact, if it does, with SM particles?
 - Does one or more new dark force exist?
 - How complex is the dark sector spectrum?

Dark sectors and portal interactions

The **mediator** can be scalar, fermion, vector, axion...

The relic **dark matter (DM)** can be **either the mediator** particle or just coupled to SM via a hidden interaction

Different portals can co-exist: e.g. dark photon and Higgs, or dark photon and axion

Dark sectors can conceal **not only the DM** problem, other **SM anomalies**:

Muon g-2 anomaly, proton radius, inflation, ⁸Be anomaly, ...

The vector portal is the simplest both from the theoretical [additional U(1) gauge symmetry] and experimental point of view [just replace an ordinary γ with a dark photon **A**' in any QED processes]

Many candidates: how to choose?

Dark Sector Candidates, Anomalies, and Search Techniques

A very wide panorama but some anomalies at low energy are interesting to guide the eye arXiv:1707.04591v1

Mauro Raggi, Sapienza Universita' di Roma

Simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A' boson.
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

- In this **case the new coupling constant = e** is just proportional to electric charge and it is equal for both quarks and leptons.
- As in QED, this will generate new interactions with SM fermions of type:

$${\cal L}~\sim~g'q_far{\psi}_f\gamma^\mu\psi_f U'_\mu$$

- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. P. Fayet, Phys. Lett. B 675, 267 (2009)

B. Holdom Phys.Lett. B166 (1986) 196

Dark photon and $g-2_{\mu}$

g-2 in the standard model

About 3σ discrepancy between theory and experiment. Could be due to hadronic uncertainties on the Light by Light scattering?

10^{-} g-2 and A' Excluded by $\Delta Br_{K to \pi ee} < 3.10$ κ^2 Additional diagram with dark 10 <6.10⁻⁹ photon exchange can fix the discrepancy! (with sub GeV A' masses \bigcirc) 10^{-5} Ц Can be probed by search of resonances |muon g-2|<2 σ A' M. Pospelov 10 MeV 500 MeV 100 MeV Phys.Rev. D80 (2009) 095002 m_{V}

A' decay modes MeV-GeV scale

- If $1 \text{MeV} < M_{A'} < 2m\chi$ dilepton decays "visible" decays
 - Min $M_{A'}$ >1MeV lifetime depends mostly on ϵ^2 long lived
- $\square 2m\chi < M_{A'} \text{ dark matter decays "invisible" decays}$
 - Min $M_{A'}$ <1 MeV lifetime depends mostly on α_D^2 short lived

Decays in 3γ are not interesting for the accelerator searches

A' decays in SM particles

- BR visible is =1 if dark matter is massive.
- A' "visible" decay modes
 - ♦ A'→e⁺e⁻,
 - A'→μ⁺μ⁻,
 - ♦ A'→hadrons,
- For M_{A'}<210 MeV A' only decays to e⁺e⁻ with BR(e⁺e⁻)=1
- At higher masses hadronic decay are also allowed

How to search for A' visible decays?

A' production in "visibile" decay exp.

Proton machines production:

- Mesons decays π^0,η,D^0
- QCD production lepton jets
- Electron machines production
 - 🔶 e- Bremsstrahlung
 - e-e+ annihilation + meson decays

Mauro Raggi, Sapienza Universita' di Roma

 $A' \rightarrow \ell^+ \ell^-$ visible searches status

- Grey regions: excluded regions
- Colored lines: future experiments projections
- Green band: region in which A' will explain g-2 anomaly

How to search for A' invisible decays?

Invisible decays present status

Great progress in the beginning of 2017

Still large regions of parameter space unexplored

Only 1 experiment in most of the parameter space covered

New result by NA62 see P. Massarotti's talk

Few invisible decay examples

Running experiments

Future experiments

The PADME experiment @LNF

First fixed target A' experiment with positron running since October 2018

The PADME physics cases

Measurement of low energy (100-500 MeV) EM-cross sections

- Bremsstrahlung cross section e⁺N→e⁺Nγ
- Annihilation cross sections: $e^+e^- \rightarrow \gamma\gamma e^+e^- \rightarrow \gamma\gamma(\gamma)$

PADME detector in a nutshell

PADME experiment technique

- Search for $e^+e^- \rightarrow \gamma + nothing$
 - Measure the visible gamma missin mass
 - Be sure no other photons or e+ e- is around.

PADME A'-invisible decay sensitivity

Sensitivity 10¹³e+ on target

- Based on 2.5x10¹⁰ fully GEANT4 simulated 550 MeV e+ on target events
 - Number of BG events is extrapolated to 1x10¹³ electrons on target
- Using N(A' γ)= σ (NBG)

$$\frac{\Gamma(e^+e^- \to A'\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma)} \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \varepsilon \cdot \delta$$

 δ enhancement factor: $\delta(M_{A'}) = \sigma(A'\gamma)/\sigma(\gamma\gamma)$ with ε=1 due to A' mass

PADME 2-years of data taking **at 60%** efficiency with bunch length **of 200 ns** $4x10^{13}$ EOT = 20000 e+/bunch×2×3.1·10⁷sx0.6x49 Hz

Future of the dark sector searches

Conclusions

- Dark sectors searches are an extremely vital in the last 5-10 years
 - Recast of old experiment
 - New experiments are running
 - New experimental proposals are approved
- New generation of dedicated experiment is on the way to explore the dark sectors
 - Different techniques and different final states searches are needed to provide reliable exclusions.

SPARE slides

The ⁸Be anomaly

Is this an evidence of a new light dark photon?

- Sanity checks performed
 - Excess disappears as one scans through the proton beam resonance kinetic energy of 1.03 MeV
 - excess becomes more pronounced when restricting to the subset of events with E>18 MeV and is absent for lower energy events.

Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?

Xilin Zhang^{1,*} and Gerald A. Miller^{1,†} ¹Department of Physics, University of Washington, Seattle, WA 98195, USA (Dated: March 16, 2017)

Can only mitigate the anomaly by 1σ by improving nuclear treatment. j.physletb.2017.08.013

⁸Be* anomaly: the proto-phobic 5Th force

The ⁸Be anomaly interpretation

PRL 117, 071803 (2016)

PHYSICAL REVIEW LETTERS

12 AUGUST 2016

Protophobic Fifth-Force Interpretation of the Observed Anomaly in ⁸Be Nuclear Transitions

Jonathan L. Feng,¹ Bartosz Fornal,¹ Iftah Galon,¹ Susan Gardner,^{1,2} Jordan Smolinsky,¹ Tim M. P. Tait,¹ and Philip Tanedo¹

Protophobia

Equations (5) and (8) may be satisfied with a mild $\sim 10\%$ cancellation, provided the charges satisfy

$$-2.3 < \frac{\varepsilon_d}{\varepsilon_u} < -1.8, \qquad -0.067 < \frac{\varepsilon_p}{\varepsilon_n} < 0.078. \tag{9}$$

Given the latter condition, we call the general class of vector models that can both explain the ⁸Be anomaly and satisfy pion decay constraints "protophobic."

Strongest experimental limit on the electron coupling comes from KLOE data: ε_e <2E-3

⁸Be anomaly at PADME

PHYSICAL REVIEW D 97, 095004 (2018)

Resonant production of dark photons in positron beam dump experiments

Enrico Nardi,^{1,*} Cristian D. R. Carvajal,² Anish Ghoshal,^{1,3} Davide Meloni,^{3,4} and Mauro Raggi⁵

- Exploit the fact that you "know" where to search 17 MeV \S
- Exploit the unique possibility to have e⁺ at 282.7MeV @LNF^{*}
 Tupe E₊, such that E₊=sart(2*m_{*}*E_p)=17MeV
- Tune E_{e+} such that E_{CM} =sqrt(2* m_e * E_B)=17MeV
 - Produce A' of 17MeV on shell through direct annihilation ee->A'
 - Parametrically enhanced ee->A' $O(\alpha)$ wrt ee->A' $\gamma O(\alpha^2)$
- Use threshold effect to have solid evidence if a
- Absorb any SM BG in W dump
- Work ongoing on thin target reaches

$\epsilon / N_{A'}^{\text{prod}}$	$E_{\rm res}~(v_e=0)$	$E_{\rm res}$	$E_{\rm res} + 2\sigma_b$
$1.0 imes 10^{-3}$	7.69×10^{11}	1.51×10^{11}	4.72×10^{11}
$5.0 imes 10^{-4}$	1.81×10^{11}	$3.79 imes 10^{10}$	1.17×10^{11}
$1.0 imes 10^{-4}$	7.25×10^9	1.49×10^{9}	4.73×10^{9}

PADME data taking during Run I

LDMX: P_{Miss} experiment

Future M_{Miss} fixed target experiments

