

Status of the PADME experiment

INFN Lecce and

Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento

on behalf of the PADME Collaboration

Outline

□ Motivations:

- the dark photon hypothesis
- □ Status of the search
 - experimental strategies
 - constraints
- \Box PADME at the BTF of DAΦNE
 - Design performance
 - Status of the PADME detector

The Dark Matter puzzle

main inputs:

□ From cosmological fit

▶ Ω_∧ =69%

≥ Ωm=31%

□ Barionic Matter 5 %

non barionic Matter 26 %

anisotropy of cosmic microwave background (CMB) and spatial distribution of galaxies

main features:

cold, stable weakly interacting with SM particle

Candidates:

primordial black holes, axions, sterile neutrinos, weakly interacting massive particles (WIMPs)

relic density related to electroweak scale

the most attractive solution: neutralino from R-parity conserving SUSY

searches at LHC have ruled out the most "natural" phase space regions more exotic scenarios

secluded sector

Stefania Spagnolo

A secluded sector

□ no connection between the sector of dark matter and the SM

the hidden, dark, secluded sector has its own gauge symmetries (and force mediators) and matter content

□ mediators must be light to get the correct thermal relic density

- \Box simplest model: $U_D(1)$ with a massive light Dark Photon as mediator
- ▶ a weak connection with the SM is established via portals:
 - □ scalar (Higgs), *vector*, others ...
 - vector portal: a Dark Photon, mediator of U_D(1)
 - \Box simple phenomenology

J. Alexander et al., Dark Sectors 2016 Workshop: Community Report (2017), arXiv:1608.08632

1707.04591

Stefania Sp	oagnolo
-------------	---------

Anomalies and dark matter constraints (hints) in searches INFN

- □ Dark matter constraints (hints) in searches
 - ▶ increasingly strong constraints on WIMP from direct DM searches:
 - □ LUX, Xenon1t

and LIBRA-phase-2 results showing up

- ▷ DAMA/LIBRA >9 σ annual modulation still to be independently confirmed
- FERMI-LAT: emission of GeV photons exceeding the very uncertain estimate of the astrophysical background, possible from WIMP annihilation
- positron (and no anti-proton) excess w.r.t. secondary production in PAMELA, AMS-02 data leave some room for WIMP annihilation
 - □ but also for new sources of astrophysical background
- Image: much g-2 theory-experiment discrepancy: 3.5 the combined theoretical and experimental 1σ error
- □ Berillium-8 anomaly see later

A simple scenario

Standard Model quarks, leptons g_W^{\pm}, Z_{γ}

a viable scenario no conflict with current hints from DM searches

very simple: 2 parameters **A' mass** and ε giving the **effective coupling** to the SM fermions as ε_fq_f Hidden Sector dark matter? A' (massive)

Ymm mark

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

ε naturally arise from *kinetic mixing*, in the presence of two U(1) gauge groups;
 If this is the dominant mechanism, effective coupling of A' to fermions is universal ~q_{fermion}

□ in general different couplings to different fermions possible

 \Box g-2 discrepancy accommodated by A' mass in the range 10-100 MeV and $\epsilon \sim 10^{-3}$ was a leading motivation for a dark photon, now excluded

 \Box easy to test

Stefania Spagnolo

A' phenomenology

- □ Production mechanisms
 - Meson decays
 - Bremsstrahlung
 - Annihilation
- Decays:
 - If **no** dark matter **\chi exists with** $m_{\chi} < m_{A'}/2$:

 π^0

 \Box A' \rightarrow e+e-, µ+µ-, hadrons, "visible" decays

- For $M_{A'} < 210 \text{ MeV A'}$ only decays to e+e- with BR(e+e-)=1
- otherwise

invisible decays

- **BR(XX)** ~1 since BR(SM particles) ~ ε^2
- From prompt decays to long lifetime

visible

decays

Constraints from visible decays INFN

 data from many past beam dump experiments reinterpreted to constrain visible A' decays

▶ E-137, E-141, E-774, Orsay

- production (by bremmstrahlung), SM particles absorbed in the dump, decay of A' downstream the dump, tracking+calorimetry for e+ereconstruction
- sensible to low ε
- production in a thin target + precision tracking move the region of sensibility to bigger ε

Constraints from invisible decays INFN

□ NA64

bremmstrahlung from intense electron beam, of precisely known energy + precision (tracking+) calorimetry to detect missing (momentum) energy e+e- annihilation at accelerators BABAR

- singe photon final state
- A' to invisible, missing energy and momentum

see J. McKenna talk, this conference

- dump + detection in a downstream calorimeter of particles recoiling after a scattering with DM from A' decay
 - \square E-137, BDX; model dependent (m_X, α_D)

The PADME approach

never exercised so far

□ Production from *annihilation of a* e+ *beam (550 MeV) on a thin target*

- ▷ $e^+e^- → A'\gamma$ (*A' to invisible*)
- precision reconstruction of the SM γ

$$M_{miss}^2 = (P_{e^-} + P_{e^+} - P_{\gamma})^2$$

- use of closed kinematics to statistically detect A' as missing mass
 - \square signal does not depend on A' decays and dark sector parameters (α_D , M_X)
 - the mass peak provides a clean signature which allows to measure both mass and coupling
 - \Box production cross section is enhanced for $m_{A'}$ close to the center of mass energy, while bremsstrahlung production decreases with $m_{A'}$
- □ Other physics opportunities can be open if sensitivity to visible decays is maintained (ALPs, etc ...)

Cross section and correlation

First PADME proposal

arXiv:1403.3041

 $\sigma(e^+e^- \rightarrow \gamma \gamma) \simeq 1.6 \text{ mb}$

$$e^+e^- \to \gamma \gamma$$

$$e^+e^- \to \gamma U, M_U = 5 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 10 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 15 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

$$e^+e^- \to \gamma U, M_U = 20 \text{ MeV}$$

 $M_{miss}^2 = (P_{e^-} + P_{e^+} - P_{\gamma})^2$

Photon direction and energy correlated

Stefania Spagnolo

Status of the PADME experiment

Stefania Spagnolo

Status of the PADME experiment

The PADME beam

The Beam Test Facility of the DAΦNE complex at Laboratori nazionali di Frascati

NIM A 515 (2003) 524-542

	Electrons	Positrons	
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV	
Linac energy spread [Dp/p]	0.5%	1%	
Typical DAΦNE injection currents/bunch ~10 nC			
unch length [ns] 1.5 – 40 (can reach 200			
Linac Repetition rate	1-50 Hz	1-50 Hz	
Typical emittance [mm mrad]	1	~1.5	
Beam spot s [mm]	<1 mm		
Beam divergence	1-1.5 mrad		

PADME requirement: > 10¹³ positrons on target

Can be reached in ~2y of run with the improved bunch length ~160ns

feasibility demonstrated in 2016

Status of the PADME experiment

INFŃ

PADME reach (from design)

□ in the absence of indications of signal events n data

- \Box expected limits on ϵ^2 as a function of $m_{A'}$
 - ▶ from N(A'γ)= σ (N_{BkG})
- 2 years of data taking at 60%
 efficiency with bunch length of 160 ns

3.6x10¹³ POT = 20000 e+/bunch × 2 × 3x10⁷s x 0.6 x 49 Hz

 Possible extension of the mass range (< 32 MeV) increasing beam energy < 1 GeV

Stefania Spagnolo

Backgrounds

- ☐ Bremmstrahlung e+ Z → e+ Z+gamma
 - suppressed by looking for hits in the positron veto ~2ns w.r.t. the photon cluster, with energy (measured from the bending in the magnetic field) compatible with E_{e+} + E_Y ~ E_{beam}
- \Box annihilation e+e- $\rightarrow \gamma \gamma$
 - pretty symmetric; suppressed by single photon request

 □ extra radiation in e+e- → γγγ > symmetry lost, SAC can help 	Background process	Cross section e⁺@550 MeV beam	Comment
	$e^+e^- \rightarrow \gamma\gamma$	1.55 mb	
	$e^{_+} + N \rightarrow e^{_+}N \gamma$	4000 mb	Eγ > 1MeV, C
	е⁺е⁻ →үүү	0.16 mb	CalcHEP, Eγ > 1MeV
	$e^+e^- \rightarrow e^+e^-\gamma$	180 mb	CalcHEP, Eγ > 1MeV

Backgrounds

- ☐ Bremmstrahlung e+ Z → e+ Z+gamma
- suppressed by looking for hits in the positron veto ~2ns w.r.t. the photon cluster, with energy (measured from the bending in the magnetic field) compatible with E_{e+} + E_γ ~ E_{beam}
 good timing required
- \Box annihilation e+e- $\rightarrow \gamma \gamma$
 - pretty symmetric; suppressed by single photon request

- No more than one photon in the ECal fiducial volume
- No tracks in the positron veto within ±2 ns
- No photons with
 Eγ>50 MeV within ±2ns
 in the SAC
- $\Box \text{ Cluster Energy: Emin(M_{A'})} \\ < \text{ECI} < \text{Emax(M_{A'}) MeV}$
- □ Missing mass in the region: $M_{A'^2} \pm \sigma(M_{miss}^2)$

Status of the PADME subdetectors

The Calorimeters: ECAL

- □ **BGO crystals** available from L3 experiment
- Cylindrical shape: radius 280 mm, depth of 230 mm
 - Inner hole 100 mm side
 - 616 crystals 21×21×230 mm³

□ HZC XP1911 PMT, 19 mm diameter

 Readout (common to all systems in PADME): waveform digitizers @ 1-5GS/s

INFŃ

Status of the PADME experiment

The Calorimeters: SAC

behind the central hole of ECAL

a Small Angle Calorimeter made of 25 crystals of PbF₂ from the OPAL experiment

- Fast Cherenkov counters 30×30×140 mm³
- angular coverage (0, 20) mrad, to veto forward γ
 - very busy region
 - \Box very good time resolution needed

Status of the PADME experiment

Stefania Spagnolo

Status of the PADME experiment

0

The Veto system & e- detector

- An array of 96(16) scintillating bars for e+ and e- veto/detectors in the magnet gap (*high energy e+ veto*); bars parallel to the magnetic field direction and rotated around their longitudinal axis by 0.1 rad to minimize geometrical inefficiencies
- □ Polystyrene with 1,5% POPOP
- Cross section :10x10 mm² Length: 200 mm equipped with a BCF-92 optical fibre housed in a longitudinal groove
- □ Readout via Hamamatsu 13360 SiPM
- □ From beam test data:
 - time resolution < 1 ns if optical fibers directly readout
 - good efficiency / noise under control

Stefania	Spagnolo
----------	----------

80

Beam position starting from SiPM [mm]

100

120

140

160

0.4

0

20

40

180

DOI 10.1109/TNS.2018.2822724 1 0.8 ס(t_{ch.x}-t_{ch.Y})//2 [ns] 0.7 0.6 0.5

The active target

- □ 2x2 cm² 100µm thick polycrystalline CDV diamond target with 16 X strip (one side) and 16 Y strips (other side)
- □ Diamond low Z improves Signal/Background
- Graphitic strips as ohmic electrodes produced by irradiation with an excimer laser ArF (λ=193 nm)
 - or metallic strip (one detector ready as backup)

From beam test data:

https://doi.org/10.1016/j.nima.2018.04.062

spatial X,Y resolution $\approx 0.2-0.3$ mm

Charge Collection Distance \approx 11-12 μm

X-Y beam profiles reconstructed

good time resolution (0.7ns)

□ IDEAS boards equipped each with a 16 channel AMADEUS chip to readout 16X+16Y strips

Stefania Spagnolo

Other opportunities at PADME ALPs ⁸Be anomaly

Stefania Spagnolo

Status of the PADME experiment

Nardi et Al, "Resonant production of dark photons in positron beam dump experiments" ArXiv1802.04756 Phys. Rev. D 97 (2018) 095004

□ Using a beam of e⁺ 282.7 MeV might lead to observation of the resonant production

several uncertainties (narrow resonance, electron velocities, etc) but potentially an interesting opportunity

□ Under investigation while PADME gets ready according to the mainstream program

Stefania Spagnolo

Status of the PADME experiment

ALPs

Contributions of axion-like particles to lepton dipole moments

1607.01022 [hep-ph]

The ALP mass range ~ 0.1–1 GeV is a region where the relatively loose constraints on ALP couplings to photons and leptons leave open the possibility of significant effects

to be studied as an opportunity for PADME

Conclusions

□ PADME getting ready to take data

- First run Sep-Dec 2018, commissioning with beam as soon as possible and until end of July
- 2019 beam time to be negotiated at LNF
- □ Possible future of the PADME experiment at Cornell
 - ▶ PADME moved to CESR @ Cornell can profit of:
 - ▶ x 10000 higher luminosity
 - ▷ x 12 higher energy (6 GeV) $M_{A'}$ < 78 MeV

Dark Sector Candidates, Anomalies, and Search Techniques

