

L'esperimento PADME

Gabriele Piperno per la collaborazione PADME

Incontri di Fisica delle Alte Energie - Trieste - 19 Aprile 2017

Il problema della Materia Oscura

Evidenze sperimentali:

- galassie a spirale
- Radiazione Cosmica di Fondo
- lensing gravitazionale
- ammassi di galassie
- Nucleosintesi da Big Bang
- strutture a larga scala

Atomi 5% Materia Oscura 27% Energia Oscura 68%

Proprietà:

- stabile (vita media ~ età dell'universo)
- fredda (non relativistica)
- interazione gravitazionale
- non barionica

Questioni irrisolte:

- natura della Materia Oscura (MO)
- interazioni col MS
- esiste un Settore Oscuro (SO)?
- forze del SO?

Fotone Oscuro

Possibile soluzione alla elusività della MO: MO non interagisce direttamente con MS, ma per mezzo di "portali".

Modello più semplice aggiunge una simmetria U(1) di gauge e il suo bosone: il Fotone Oscuro (FO) A'

In aggiunta A' con

- 1 MeV < $m_{A'}$ < 1 GeV
- ε ≈ 10⁻³

potrebbe spiegare la discrepanza tra teoria e misura su (g-2)_µ

- particelle MS neutre sotto questa simmetria
- il nuovo campo si accoppia al MS con carica effettiva εq

Produzione del Fotone Oscuro

Nelle collisioni e⁺/e⁻ il Fotone Oscuro può essere prodotto in 3 modi principali:

Decadimenti del Fotone Oscuro

Decadimenti visibili

Se non esiste MO con $m_{MO} < m_{A'}/2$:

- A' \rightarrow SM (visibile)
 - fino a $2m_{\mu}$, BR(e⁺e⁻) = 1 (se $m_{A'} > 2m_e$)

Vita media A' proporzionale a: $1/(\alpha\epsilon^2 m_{A'})$

Decadimenti invisibili

Se esiste MO con $m_{MO} < m_{A'}/2$:

- A' \rightarrow DM (invisibile) con BR $\simeq 1$
- decadimenti MS soppressi di un fattore ϵ^2

Vita media A' proporzionale a:

 $1/(a_D m_{A'})$

Status della ricerca nel visibile

Tecniche:

- beam dump (bremsstrahlung)
 - rivelazione prodotti di decadimento di A' dopo bersaglio alto z (produz. A') + schermo (assorb. MS)

٩.,

- bersaglio fisso (bremsstrahlung, annichilazione)
 - ricerca picchi in spettro massa invariante, vertici isolati
- decadimento mesoni
 - solo se A' si accoppia con quarks
 - rianalisi di vecchi esperimenti

 $(g-2)_{\mu}$ escluso (modello più semplice), ma ancora interesse per questo tipo di ricerca

Stato della ricerca nell'invisibile

A

Tecniche:

 e^-

- diffusione MO (bremsstrahlung)
 - rivelazione MO prodotta con urti
 - necessari 4 parametri (ε, m_{A'}, m_{MO}, α_D)

• ricerca massa mancante (annichilazione)

- processo cinematicamente vincolato
- no assunzioni su catena di dec. di A'

La tecnica PADME

Ricerca di A' in annichilazioni e⁺e⁻ cercando massa mancante (decadimento invisibile) in condizioni cinematicamente vincolate

• minime assunzioni dipendenti da modello: A' si accoppia ai leptoni

 accoppiamento di qualsiasi nuova particella leggera da annichilazioni e⁺e⁻ può essere limitato: Fotone Oscuro, Axion Like Particles, Dark Higgs) L'esperimento PADME - Gabriele Piperno - IFAE 2017

Il rivelatore

bersaglio attivo

- diamante (basso z)
- spessore 100 µm
- info su tempo, dim.

spot fascio, numero e+

veto (alta energia) e⁺/e⁻
barre scint. plastico

calorimetro elettromagnetico
616 BGO 2.1×2.1×23 cm³
forma cilindrica con buco
centrale
20-95 mrad cop. ang.

Poster su ECAL di Clara Taruggi

fascio e⁺

- 550 MeV
- 5000 e⁺ per bunch
- bunch 40 ns,
- ogni 20 ms

dipolo MBP-S (parte superiore non mostrata)

• (1-2)%/√E

- 0.5 T
- 1 m lungh. × 23 cm gap

Vista del rivelatore dall'alto (con segnale)

Segnale:

La Beam Test Facility dei LNF

PADME sarà posizionato nella Beam Test Facility dei Laboratori Nazionali di Frascati

	Modalità р (DAФNE	oarassitica in opera)	Modalità dedicata			
	Bersaglio	No bersaglio	Bersaglio	No bersaglio		
Tipologia particelle	e+/e⁻ selezionabile dall'utente	e⁺/e⁻ dip. dalla modalità di DAΦNE	e+, selezionabile	/e⁻ e dall'utente		
Energia [MeV]	25-500	510	25-700 (e⁺) 25-700 (e⁻)	250-730 (e ⁺) 250-530 (e ⁻)		
Spread energetico	1% @ 500 MeV	0.5%	0.5%			
Ripetizione [Hz]	10- dipendente dalla n	-49 nodalità di DAΦNE	1-49 selezionabile dall'utente			
Impulso [ns]	1	0	1.5-40 selezionabile dall'utente			
Intensità [particelle/bunch]	1-10 ⁵ dipendente dall'energia	10 ⁷ -1.5 • 10 ¹⁰	1-10 ⁵ dipendente dall'energia	10 ³ -3 • 10 ¹⁰		
Flusso medio max		3.125 • 10 ¹⁰	particelle/s			
Dim. spot [mm]	0.5-25 (y) × 0.6-55 (x)					
Divergenza [mrad]	1-1.5					

Fondi

L'esperimento PADME - Gabriele Piperno - IFAE 2017

Fondi principali: • $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

- $e^+ N \rightarrow e^+ N \gamma$
- pile-up

Tagli:

- 1 cluster nel volume fiduciale di ECAL
- no particelle nei veto
- no γ nel SAC con $E_{\gamma} > 50$ MeV
- 20-150 MeV < E_{γ} < 120-350 MeV (dipendente da $m_{A'}$)

Geometria dei fondi

Annichilazione (+ISR): $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

Bremsstrahlung: $e^+ N \rightarrow e^+ N \gamma$

L'esperimento PADME - Gabriele Piperno - IFAE 2017

Sensibilità

Basata su simulazione (GEANT4) di 2.5 · 10¹⁰ eventi da e⁺ di 550 MeV su bersaglio. Numero eventi di fondo estrapolato a 10¹³ e⁺ su bersaglio.

- Il Fotone Oscuro (FO) è predetto in una classe di modelli fisici relativamente giovani e generali che stanno velocemente guadagnando interesse nella comunità MO
- PADME è un esperimento che cercherà un FO che decade in "invisibile" (MO) ai Laboratori Nazionali di Frascati
- La collaborazione punta a collezionare $10^{13} e^+$ su bersaglio entro la fine del 2018, testando in modo model-independent un FO con $\varepsilon \ge 10^{-3}$ e con massa fino a 23.7 MeV (E_{fascio} = 550 MeV)
- I risultati di PADME si applicheranno anche ad altre ipotetiche particelle come Axion Like Particles e Dark Higgs

Referenze

Fotone Oscuro

- P. Galison and A. Manohar, Phys. Lett. B 136, 279 (1984)
- B. Holdom, Phys. Lett. B 166, 196 (1986)
- \bullet II Fotone Oscuro come soluzione dell'anomalia (g-2) $_{\!\mu}$
 - M. Pospelov, Phys. Rev. D 80, 095002 (2009)
- Stato e prospettive nella ricerca del Fotone Oscuro
 - M. Raggi and V. Kozhuharov, Riv. Nuovo Cim. 38, 449 (2015)
- Beam Test Facility ai Laboratori Nazionali di Frascati
 - G. Mazzitelli et al., Nucl. Instrum. Meth. A 515, 524 (2003)

PADME

- M. Raggi and V. Kozhuharov, AdHEP 2014 , 959802 (2014)
- M. Raggi, V. Kozhuharov and P. Valente, EPJ Web Conf. 96, 01025 (2015)

L'esperimento PADME - Gabriele Piperno - IFAE 2017

Ricerche del Fotone Oscuro

L'esperimento PADME - Gabriele Piperno - IFAE 2017

Bersaglio attivo

Caratteristiche:

- Diamante (basso z, poca brems.)
- Dim.: 20×20×0.05/0.1 mm³
- 16 (oriz.)×16 (vert.) strisce attive di grafite
- $\sigma_{x-y}(\text{posizione fascio}) < 2 \text{ mm}$
- in vuoto con sistema di movimento

18

Risultati rivelatore di test

Calorimetro elettromagnetico (1)

Caratteristiche:

- $\sigma_{\rm E} \simeq (1-2)\%/\sqrt{\rm E}$
 - alta statistica γ
 - contenimento
- risoluzione temporale sul cluster < 1 ns
- risoluzione angolare ≤ 1 mrad
- copertura angolare: [20,93] mrad
- accettanza angolare: [26,83] mrad
- buco centrale per brems. al SAC (più veloce)

Parameter: Units: g	ρ g/cm ³	°C	X ₀ * cm	R_M^* cm	dE*/dx MeV/cm	λ_I^* em	7decay ns	λ_{max} nm	γz ^ų	Relative output [†]	Hygro- scopic?	d(LY)/d1 %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	105 0	1.12	2.23	9.0	22.8	300	480	2.15	21	по	-0.9
BaF2	4.89	1280	2.03	3.10	6.5	30.7	650^{s} 0.9^{f}	$\frac{300^{s}}{220^{f}}$	1.50	36^{s} 4.1 ^f	no	-1.9^s 0.1^f c
CaI(T1)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4 N
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	$\frac{30^{8}}{6^{f}}$	$\frac{420^8}{310^f}$	1.95	3.6^{s} 1.1^{f}	slight	-1.4
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	$\frac{30^{s}}{10^{f}}$	425^{8} 420^{f}	2.20	0.3^8 0.077^f	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce)	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

616 BGO 2.1×2.1×23 cm³ @ 3 m dal bersaglio

382.5 / 94

20

Calorimetro elettromagnetico (2)

Gap di dipolo limita l'accettanza angolare

Risultati con una matrice 5×5 di BGO @ BTF

PADME nel visibile

Grazie alla granularità dei veto e⁺/e⁻ è possibile ricercare (breve vita media) A' che decadono in visibile con il setup attuale

Possibili miglioramenti futuri:

- bersaglio sottile ad alto z (più bremsstrahlung A')
 - $E_{A'}$ può essere > $\sqrt{2m_e E_{beam}}$ • $E_{A'}$ non nota (cinematica non chiusa)
 - Solo dec. visibili sono interessanti

bremsstrahlung

Bethe-Heitler

Calcoli preliminari con 10¹⁸ EOT danno una sensibilità su $\varepsilon^2 \sim 10^{-7}$ nella regione di bassa massa, che peggiora all'aumentare di m_{A'}

Dark Higgs a PADME

Limiti sul Dark Higgs

Decadimenti interessanti per PADME (dipende da $m_{h'} e m_{A'}$):

Produzione

 \rightarrow A' A'

 $e^+ e^- \rightarrow A' h'$

- se $m_{A'} < m_{h'}/2$ dominante A' h' \rightarrow A' A' A' \rightarrow 6 leptoni (0 carica, $E_{tot} < E_{beam}$)
- se $m_{A'} > m_{h'}/2$ (o h' con lunga vita media) dominante A' h' \rightarrow A' inv. \rightarrow 2 leptoni (0 carica)
- forte segnatura (no nuove componenti rivelatore necessarie)
- → spettrometro tracciante necessario

Axion Like Particles a PADME

ALP che decade in invisibile o a lunga vita media in PADME ha la stessa segnatura di un FO:

•1γ

• energia mancante nello stato finale

Nel dec. visibile a $\rightarrow \gamma \quad \gamma$ tutti i meccanismi di produzione possono essere esplorati fino a m_{ALP} ~100 MeV.

Osservabili:

- e⁺ γ γ
- •γγγ

Limiti sulle ALPs che si accoppiano ai fotoni

