The PADME experiment at LNF

Venelin Kozhuharov

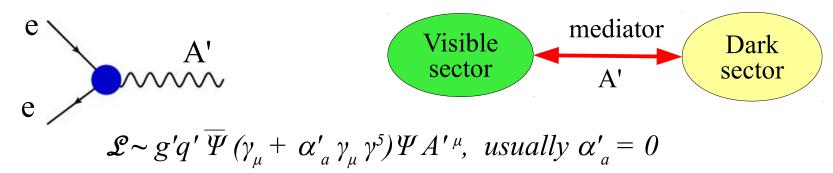
For the PADME collaboration SU "St. KI. Ohridski"* and LNF-INFN

Light Dark Matter search at Accelerators - 2017 24-28 March 2017

Overview

- Dark photon primer
- PADME approach
- Present status and activities
- Conclusions

Dark matter

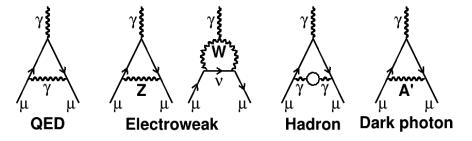

- WIMP miracle particle with 100 GeV satisfies the requirement for a dark matter candidate
 - Weakly interacting
 - Correct density
- However ...
 - No particle with such characteristics discovered so far...

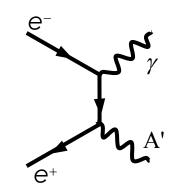
The childhood of DM is over and it is time to stop believing in miracles (even if Santa Claus may bring presents ...)

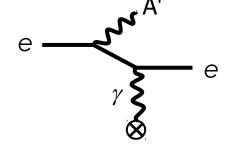
- Rich dark sector
 - Multiparticle structure of the Standard Model
 - Why the DM should be composed of a single particle?
 - The picture should be simple, but not simpler than necessary

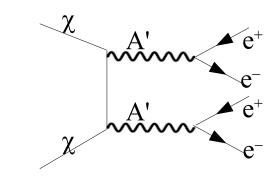
<u>New gauge bosons</u>

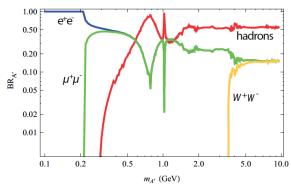
The effective interaction that can be studied is

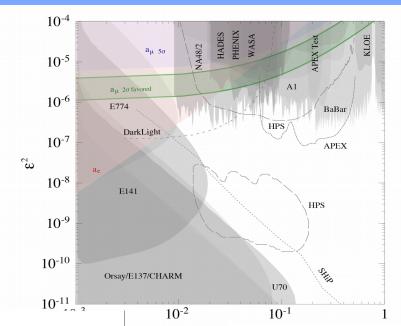

- $q_f \rightarrow 0$ for some flavours
- Such textbook scenario could address the $(g_{\mu}-2)$ discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the q_{em} $L_{\it mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{\it QED} F_{\it dark}^{\mu\nu}$
 - Just single additional parameter ε
 - Leptophilic/leptophobic dark photon
- Other messenger types possible (neutrino, higgs, ALP)
- Rich dark sector?

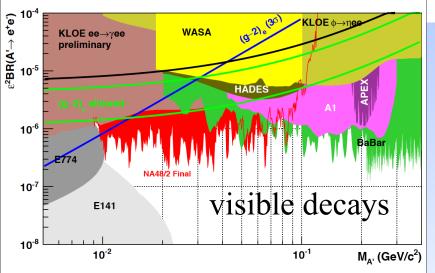

Dark photon phenomenology

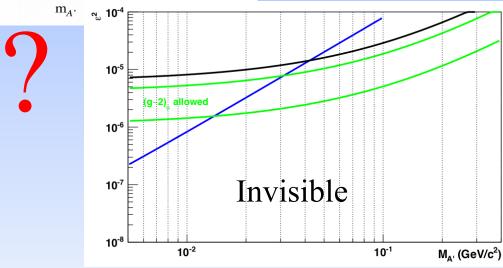

- Production mechanisms
 - Meson decays
 - Bremsstrahlung
 - Annihilation

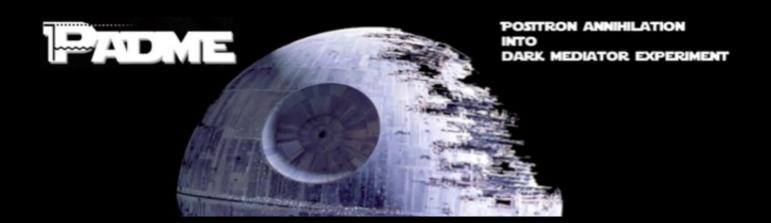

- To SM model particles if nothing in the DS lighter than A'
- A' $\rightarrow \gamma\gamma\gamma$, if M(A') < 2m_e , small width, A' quasi stable
- − To DS particles with Br(A' $\rightarrow \chi \chi$) = 1
- Contribution to g-2:
 - About 3 σ discrepancy theory vs experiment

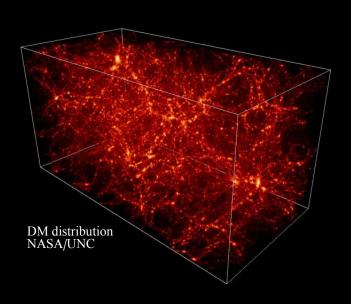


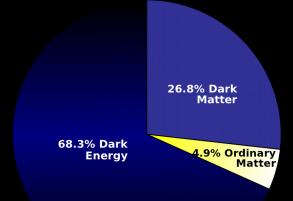

Dark matter annihilation

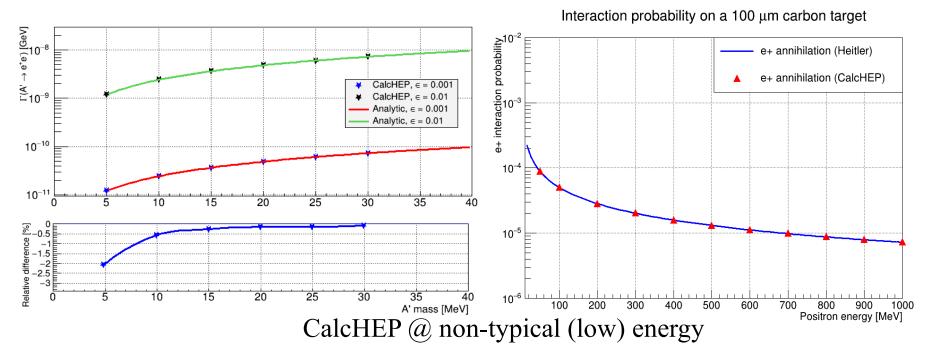





Dark photons

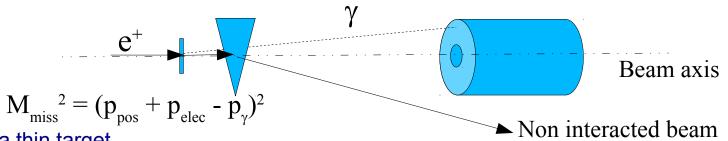

Dark photon
Secluded photon
Paraphoton
A'
U




Dark photon

Simple effective model implemented in CalcHEP, used for further studies

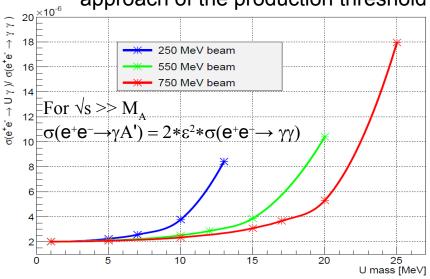
$$\mathcal{L} \sim \varepsilon e \overline{\Psi} \gamma_{\mu} \Psi A'^{\mu}$$


Dark photon decay width into e⁺e⁻ used for validation of the calculations

$$\Gamma_U = \Gamma_{U \to e + e -} = \frac{1}{3} \alpha \epsilon^2 M_U \sqrt{1 - \frac{4me^2}{M_U^2}} \left(1 + \frac{2me^2}{M_U^2} \right)$$

Missing mass technique

Study only the recoil photon

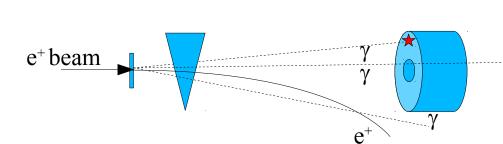


- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, Ε_γ, φ_γ

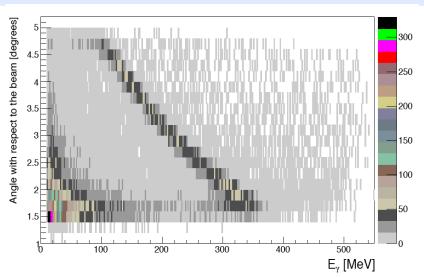
$$\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$$

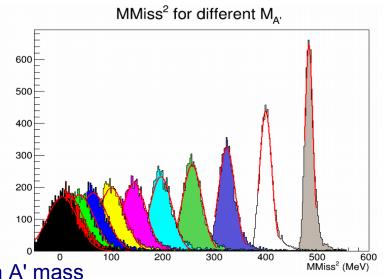
- Clear 2 body correlation
- Background minimization
 - Best possible resolution on energy/angle measurement
 - Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Photons vetoing
 - Minimize the interaction remnants + vetoing

Cross section enhancement with the approach of the production threshold



Backgrounds

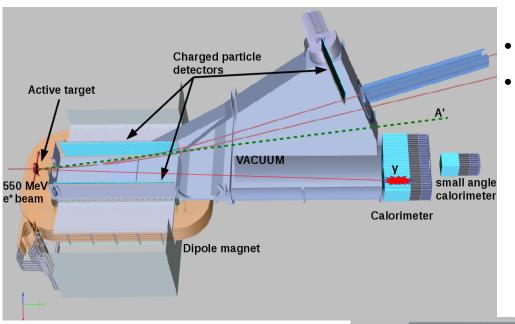

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
- e⁺ beam
- An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation
 - Peaks at $M_{miss} = 0$
 - Quasi symmetric in gamma angles for $E_{\gamma} > 50 \text{ MeV}$

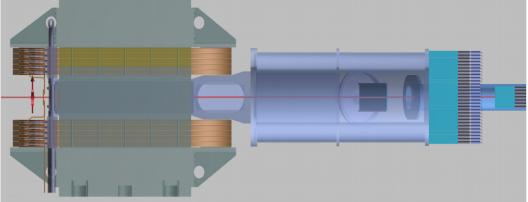

e⁺ beam

- 3 photon annihilation
 - Symmetry is lost decrease in the vetoing capabilities
 - Does not peak
- Radiative bhabha scattering
 - Topology close to bremsstrahlung

Measurement strategy

• $O(10^4 - 10^5)$ foreseen background events for a given A' mass

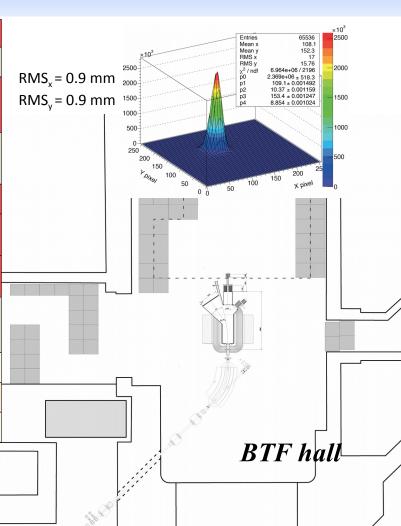

Background process	Cross section e ⁺ @550 MeV beam	Comment Carbon target
$e^+e^- \rightarrow \gamma\gamma$	1.55 mb	
$e^+ + N \rightarrow e^+ N \gamma$	4000 mb	Eγ > 1MeV
$e^+e^- \rightarrow \gamma\gamma\gamma$	0.16 mb	CalcHEP, Eγ > 1MeV
$e^+e^- \rightarrow e^+e^-\gamma$	180 mb	CalcHEP, Eγ > 1MeV


PADME experiment

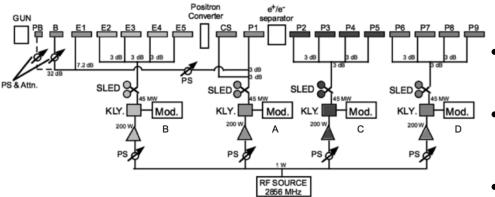
Positron Annihilation into Dark Matter Experiment

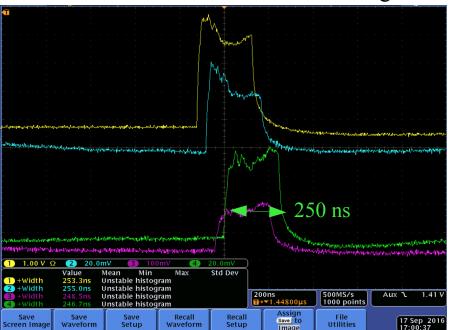
Adv. HEP 2014 (2014) 959802

- Small scale fixed target experiment
- M. Raggi, V. Kozhuharov and P. Valente:
 - e⁺ @ Frascati Beam test facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter

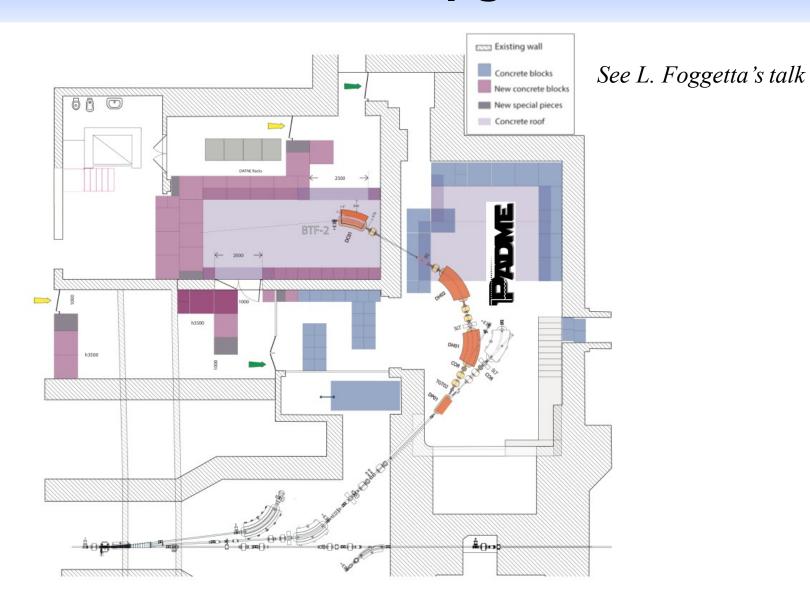


BTF @ LNF

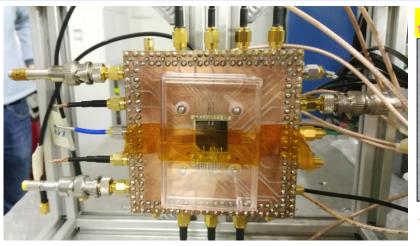

Parameter	Parasiti	c mode	Dedicated mode		
Parameter	With target	Without target	With target	Without target	
Particle species	e ⁺ or e ⁻ Selectable by user	e ⁺ or e ⁻ Depending on DAFNE mode	e ⁺ or e ⁻ Selectable by user		
Energy (MeV)	25–500	510 25–700 (e ⁻ / ₆		250–730 (e ⁻) 250–530 (e ⁺)	
Energy spread	1% at 500 MeV	0.5%	0.5%		
Rep. rate (Hz)	Variable betw Depending on	een 10 and 49 DAFNE mode	1–49 Selectable by user		
Pulse duration (ns)	1	0	1.5–40 Selectable by user		
Intensity (particles/bunch)	1–10 ⁵ Depending on the energy	107–1.5 1010	1–10 ⁵ Depending on the energy	10³-3 10¹º	
Max. average flux	3.125 10 ¹⁰ particles/s				
Spot size (mm)	0.5–25 (y) × 0.6–55 (x)				
Divergence (mrad)	1–1.5				

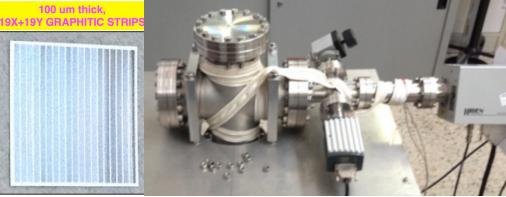

- Available immediately
- Possibility to make modifications to optimize the conditions

BTF @ LNF



The linac achieved 250 ns bunch length



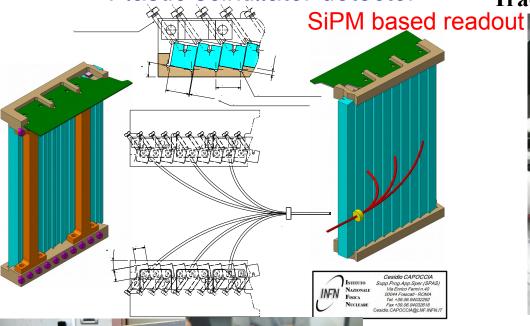

- PADME requirement: > 10¹³ positrons on target
- Repetition rate: 49 Hz
 - 5000 e⁺, 40 ns bunch length
- Positron production:
 - Positron converter
 - BTF target
- Bunch length limited by the RF compression at SLED
 - A longer pulse allows increasing the number of positrons/pulse
 - RF power flat over 4.5 μs at KLY
- Optimization ongoing
 - Expected to run at 160 ns in 2018

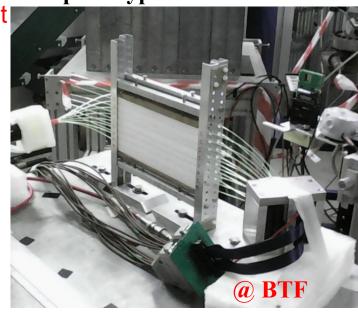
BTF infrastructure upgrade

Diamond target

Polycrystalline diamonds

- 100 mm thickness:
- 16 × 1 mm² strip and X-Y readout in a single detector
- Samples with graphitized and metalized strips available
- PADME prototype 20 × 20 mm² produced and tested 2015
- Low noise CSA integrated in the 16 channel chip AMADEUS from IDEAS

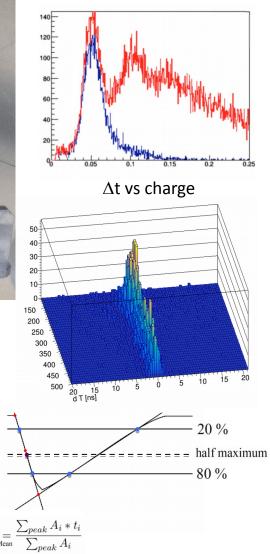

Motorized support structure ready: vacuum tests ongoing



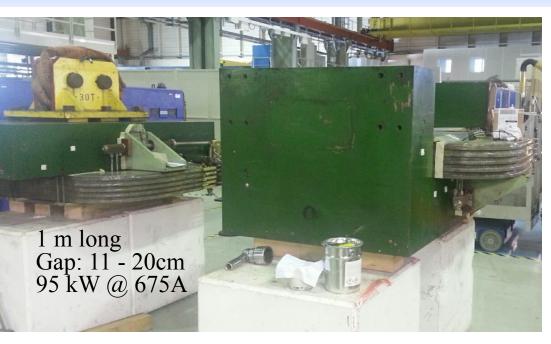
- Test beam results (~5000 e):
 - good efficiency
- resolution on the position of the beam center < 0.2 mm
- FE electronics defined

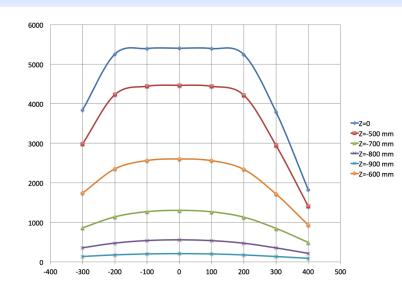
Charged particle vetoes

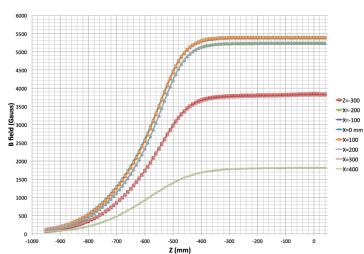
• Plastic scintillator detector Tracker prototype for test with MAPMT



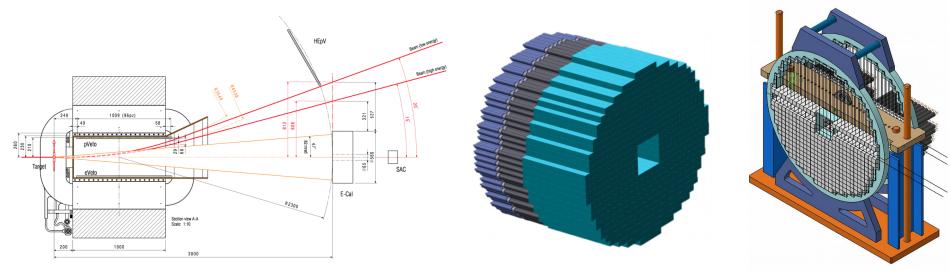
- Available already
- Mechanics design completed
- SiPM electronics prototype available
- Efficiency > 99%, $\sigma(t)$ < O(1 ns)


Charged particle vetoes

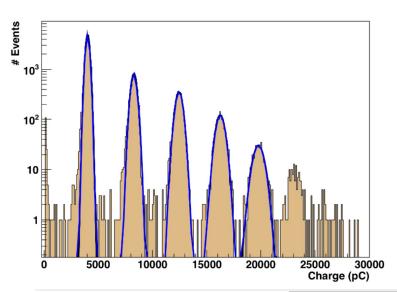

- Different resolution values obtained using different definitions of timing
- Already well below 1 ns resolution level at the level without any calibration and very preliminary analysis
- Front-end electronics prototype working extremely well

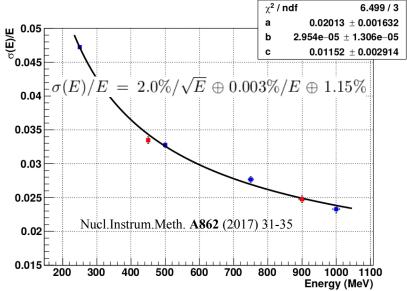


<u>Magnet</u>



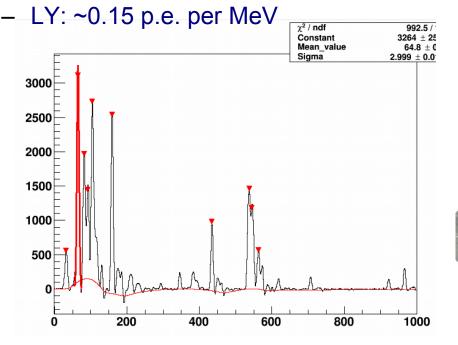
- MBP-S series, on loan from CERN
 Many thanks to TE-MSC-MNC
- Poles: 100 cm length, 52 cm width
- Variable gap 11 to 20 cm, further extended to 23 cm
- Detailed field mapping: good B field quality
- Fringe field not negligible, even outside the coils, relevant for the precise beam steering onto the active target


Calorimeter design


- BGO crystals available from L3 experiment (agreement with L3, C.C.Ting, INFN)
- Cylindrical shape: radius 280 mm, depth of 230 mm
 - Inner hole 100 mm side
 - 616 crystals 21 × 21 × 230 mm³
 - Angular resolution ~ O(1 mrad)
 - Angular acceptance (20 83) mrad
- HZC XP1911 PMT, 19 mm diameter
- Readout: waveform digitizers @ 1-5 GS/s

Calorimeter design

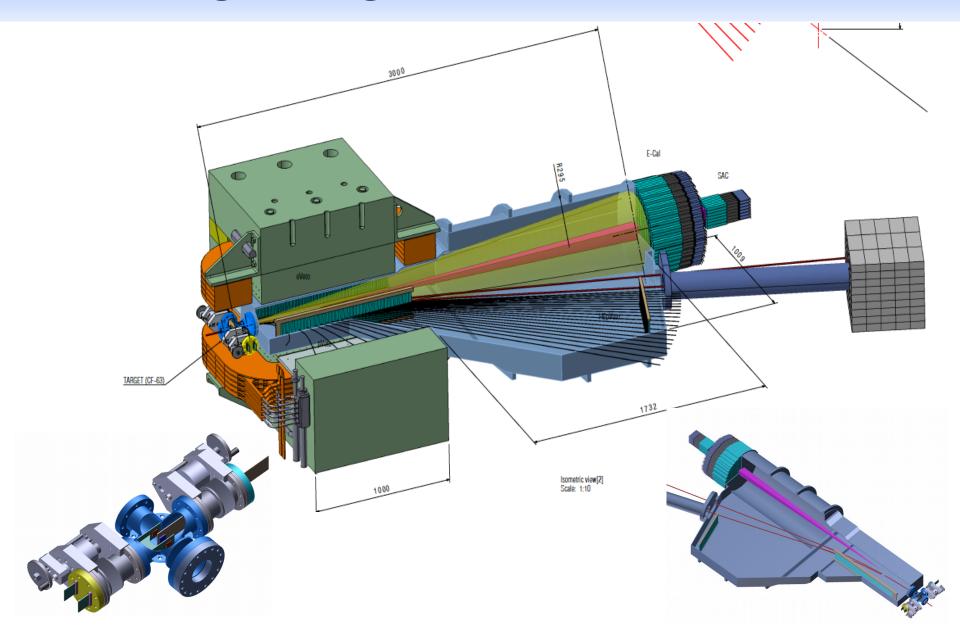
Parameter Units:	: ρ g/cm ³	MP °C	X_0^* cm		dE^*/dx MeV/cm	_	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	Relative output [†]		d(LY)/d7 %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s} 0.9^{f}	300^{s} 220^{f}	1.50	$\frac{36^{s}}{4.1^{f}}$	no	$-1.9^{s} \\ 0.1^{f}$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	$\frac{30^s}{6^f}$	420^{s} 310^{f}	1.95	3.6^{s} 1.1^{f}	slight	-1.4
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	$\frac{30^{s}}{10^{f}}$	425^{s} 420^{f}	2.20	0.3^{s} 0.077^{f}	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce)	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2



Small angle photon veto

- Veto the high energy photons emitted at small angles with respect to the non deflected positron beam
 - High occupancy → excellent time resolution & short pulses
 - Cerenkov light detector
- Initial tests: lead glass from OPAL calorimeter

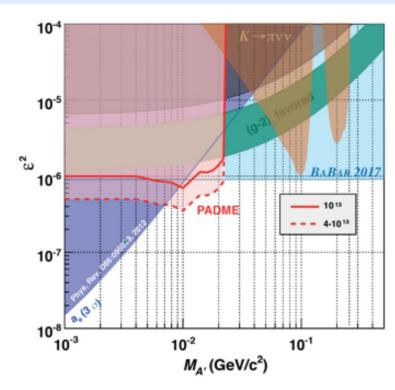
25 of 30 x 30 x 200 mm³ bar coupled to R9880U-110 PMT


- RO: CAEN V1742 @ 5 GS/s, 700 ps signal width

Design progress

Test beam data

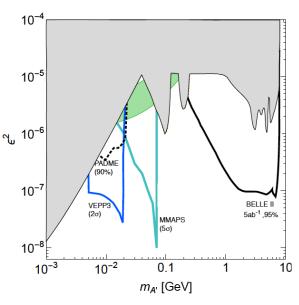
A long path of learning


Period (1 week)	Beam	Intensity	Milestone
September 2014	Positron	$10^4 - 10^{10}$	Test of diamond with graphite strips
November/ December 2014	Positron	$10^4 - 10^{10}$	Background for beam dump, shielding First check on BGO crystals
May 2015	electron	1	LYSO vs BGO crystals
May 2015	electron	1	LYSO vs BGO Calorimeter prototype
June 2015	electron	1	BGO calorimeter prototype
November 2015	electron	1	Spectrometer and target prototype
March 2016	electron	$1 - 10^4$	Mimosa/Timepix3 test for PADME
April 2016	positron	$1 - 10^4$	Test of PADME Ecal and Diamond target
July 2016	positron	$1 - 10^3$	ECAL resolution, PMT choice Sc+WLS spectrometer prototype (MAPMT)
November 2016	positron	$1 - 10^{10}$	ECAL prototype irradiation Spectrometer time resolution
April 2017	positron	1 – 10	Veto electronics certification
June 2017	positron	1 – 10	ECAL final test
July 2017	positron	$1 - 10^5$	PADME target region

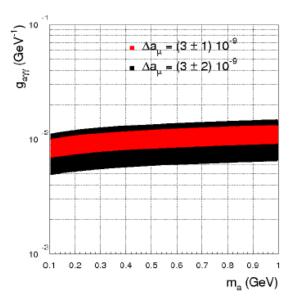
And multiple tests with RA sources...

Sensitivity estimation

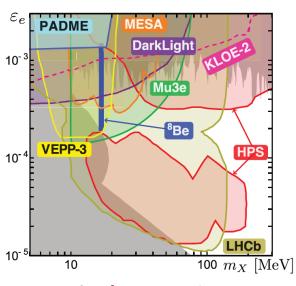
Selection


- Kept as simple as possible
- Attempt for a common selection of visible/invisible scenarios
- Single cluster in the Calo
- 30 mrad < θcl < 65 mrad
- Cluster energy: $E_{\min}^{CL}(M_{A;})$ in 50 150 MeV $E_{\max}^{CL}(M_{A'})$ in 120 350 MeV
- ± 1σ cut on the missing mass
- Veto on positrons in ± 2 ns time window
- Using $N_{signal} = \sigma(N_{background})$ to derive limits

- Accessible regions:
 - E=550MeV: $M_{A'} < 23.7 MeV$
- Improvements possible
 - Increase beam energy
 - Extend the bunch length


PADME physics case

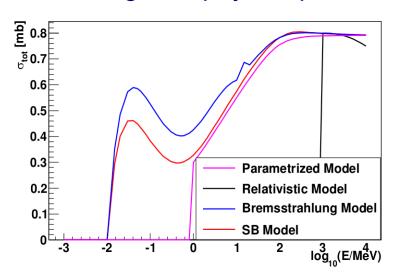
Dark Photon arXiv:1608.08632v1

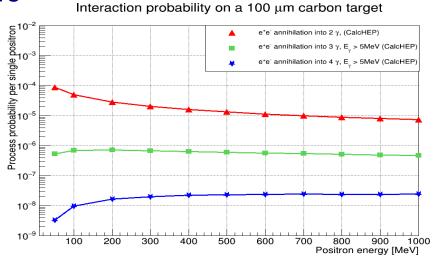

Invisible final state A' $\rightarrow \chi \chi$

ALPs and g-2 arXiv 1607.01022v2

ALPs final state $a \rightarrow \gamma \gamma$

Fifth force arXiv:1608.03591v1

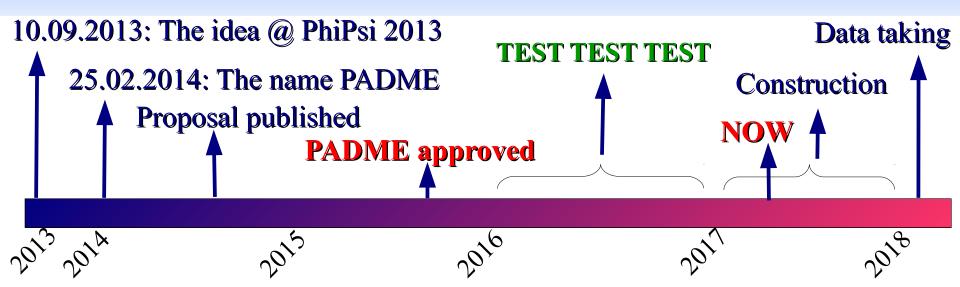

Final state X→ee


PADME is one of the experiments able to provide valuable input

Optimization of the sensitivity of the experiment for non A' searches.

PADME physics case

PADME is able to perform measurements of few low energy electromagnetic physics parameters


- GEANT4 model uncertainties on bremsstrahlung Parametric: 4-5 % for $E_{\rm e+}$ > 1 MeV;SB model: 3-5% for $E_{\rm e+}$ > 50 MeV
 - Measurement of differential cross section dσ/dEdθ interesting for PADME
- $\Gamma(\text{annihilation}) = \Gamma(e^+e^- \to \gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma\gamma) + ... \approx 1.05 \text{ x } \Gamma(e^+e^- \to \gamma\gamma)$

Measurement of $\Gamma(e^+e^- \rightarrow \gamma\gamma\gamma)$ at the % level

Searches in annihilation status

	PADME	MMAPS	VEPP3
Place	LNF	Cornell	Novosibirsk
Beam energy	550 MeV	Up to 5.3 (6.0) GeV	500 MeV
M _A . limit	23 MeV	74 MeV	22 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	O(2x10 ²³) e ⁻ /cm ²	5x10 ¹⁵ e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	2.3 x 10 ⁻⁶ mA	30 mA
$e^+e^- \rightarrow \gamma\gamma$ rate [s ⁻¹]	15	2.2 x 10 ⁶	1.5 x 10 ⁶
ε² limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 ⁻⁶ - 10 ⁻⁷	10 -7
Time scale	2017 - 2018	?	2020 (ByPass)
Status	Approved	Funds identification	Approved

Conclusions

- A portal for a complete physics program devoted to the dark photon searches is open – visible, invisible, thin target, thick target, dump, electron or positron
- Interesting parameter space could be covered, using 10³ 10⁵ e⁺/bunch.
- PADME was APPROVED by INFN CSN1 in 2015 and fully financed under the What Next INFN program
- Test beam, technology fixes and construction ongoing

Data taking – starting in spring next year