

Dark sector studies at PADME

Elizabeth Long - Sapienza Università di Roma elizabeth.long@uniroma1.it

Outline

- Dark photon models
- Design of the PADME experiment
- Data taking at PADME
- First physics results
- The beryllium anomaly (X17 particle) and PADME Run 3
- Conclusions

The dark photon

- Dark photon (A') portal between Standard Model & Dark Sector
- Massive vector boson
- SM-A' coupling $\epsilon \ll 1 =>$ hidden
- Certain parameters could also explain other anomalies

Dark Sector Candidates, Anomalies, and Search Techniques

Experimental approaches

- Vector portal production at PADME:
 - Annihilation:
 - Associated production: $e^+e^- \rightarrow \gamma A'$
 - Resonant annihilation: $e^+e^- \rightarrow A'$
 - A'-strahlung: $e^+N \rightarrow Ne^+A'$
- **Visible searches**: detection of lepton pair in $A' \rightarrow l^+l^-$
- Invisible searches: don't rely on detection of decay products

Dark photon production and detection at PADME

- Positron Annihilation to Dark Matter Experiment: $e^+e^- \rightarrow \gamma A'$ based at Laboratori Nazionali di Frascati (LNF)
- <550 MeV e⁺ beam on 2cm×2cm×100μm active diamond target
 - 50 Hz pulsed beam
 - 300 ns pulse maximum duration
 - ~25000 e+/pulse
- Dipole B-field diverts un-interacted beam and charged final state particles
- Plastic scintillator bars as charged particle vetoes, in combination with the PbF₂ Small Angle Calorimeter
- Signal: 1 γ in BGO Electromagnetic Calorimeter & nothing elsewhere, ΔM_{miss}^2 then gives access to $M_{A'}$

Current constraints

Data Taking

- Two runs in three configurations since installation in Sept. **2018**
- Acquired luminosity measurement:
 - Run1 = 7×10^{12} POT
 - Run2 = 5.5×10^{12} POT
 - Precision = 5%
- Run 1a: secondary beam \rightarrow Run 1b: primary beam
 - \rightarrow Reduced beam-induced background
- Detailed MC simulation of beamline (https://arxiv.org/abs/2204.05616v1)
 - → Run 1b → Run 2: change of vacuum separation
 - → Significantly reduced background from vacuum window
 - \rightarrow Run 1b \rightarrow Run 2: longer beam (from 250 ns to 280 ns)
 - \rightarrow Reduced pileup in detectors

Б

Multiple photon annihilation

- $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma))$ measured
 - Characterisation of ECal
 - $\sigma(e^+e^- \rightarrow \gamma A') \propto \epsilon^2 \times \sigma(e^+e^- \rightarrow \gamma \gamma) \times \delta(MA')$
 - No measurements below 500 MeV with <20% precision (last measurements were e^+e^- disappearance from 1953)
 - Could be sensitive to sub-GeV new physics eg ALPs

Tag and probe

- Measurement used 10% of Run 2 data
 - NPOT stable in time within each run
 - 19K 36K POT/bunch
 - 4×10^{11} total POT
 - $E_{beam} = 430 \text{ MeV}$
 - Bunch length ~200-280 ns
 - different time profile in each run
- Tag and probe method, exploiting two-body kinematics $\rightarrow E_{\gamma} = f(\theta_{\gamma})$
 - Count tag photons with $E_{\gamma} f(\theta_{\gamma}) \sim 0$
 - Match using $E_{\gamma 1} + E_{\gamma 2} = E_{beam}$ and count probes

 $\underline{E}_{\gamma 1} + \underline{E}_{\gamma 2} = \underline{E}_{beam}$

Tag photon 45000 Me **PADME** Preliminary 40000 Data, outer rind Run II, E=430 MeV, 4×10^{11} POT Total fit counts/1 35000 Total signal 2.7×10^4 POT / 280 ns Signal 1st component 30000 Tags for inner ring Signal 2nd component Total background 25000 Beam background Pileup background 20000 15000 10000 5000 0^{-80}_{-80} -20-40 20 40 -60 0 60 ΔE_{tag} [MeV] **Probe photon** 10000 counts/1MeV 9000 **► PADME** Preliminary RunII, E = 430 MeVData - background, inner ring 8000 $4 \times 10^{11} POT$ Gaussian fit 7000 2.7×10^4 POT / 280 ns 6000 5000 4000 3000 2000 1000 -80-60 -40-200 20 40 60 $\Delta \mathbf{E}_{probe}$ [MeV]

Event selection

- At least two good quality ECAL clusters:
 - $|\Delta t| < 10$ ns
 - $E_{\gamma 1} > 90$ MeV, $E_{\gamma 2} > 90$ MeV
 - $\Delta E = E_{\gamma} f(\theta_{\gamma})$: $|\Delta E(\theta_1)| < 100 \text{ MeV} |\Delta E(\theta_2)| < 100 \text{ MeV}$
 - For the leading photon $R_{\gamma 1} \in FR$ (115.8 < R < 285 mm ~6% acceptance)

Cross section measurement

 $\sigma(e^+e^- \to \gamma\gamma(\gamma)) = 1.930 \pm 0.029 \, (stat) \pm 0.057 \, (syst) \pm 0.020 \, (target) \pm 0.079 \, (lumi) \, mb$ QED @NLO $\sigma(e^+e^- \to \gamma\gamma(\gamma)) = 1.9573 \pm 0.0005 \, (stat) \pm 0.0020 \, (syst) \, mb$

The beryllium anomaly

SAPIENZA Università di Roma

- Collaboration at ATOMKI institute in Hungary studying IPC decays of excited
 ⁸Be (2016)/⁴He (2020) nuclei
- Found anomaly compatible with new particle of 17 MeV mass
- LNF is the only facility in the world with a positron beam capable of this measurement at **282** MeV resonance

X17 as vector or pseudo-scalar

• Interpretation as vector or pseudo-scalar not totally excluded

PADME Run 3

- Knowing from ATOMKI that $X17 \rightarrow e^+e^-$, we reverse the Feynman diagram so that $e^+e^- \rightarrow X17$, and then search for $X17 \rightarrow e^+e^-$ decays
- Studies from Run 2 show difficulty of charged final state measurements with vetoes
- Taking confidence from $e^+e^- \rightarrow \gamma\gamma$ measurement we're looking for X17 with the **ECal**
- Built **ETagger** detector of 5mm thick plastic scintillator to distinguish $e^{+/-}$ from γ

X17 at PADME

- Couplings of $(2 6) \times 10^{-4}$ represents an open window for X17 searches, especially for protophobic models
- PADME can generate several thousand X17 even with these small couplings

SAPIENZA Università di Roma

Conclusions

- PADME's 2 runs between 2018 and 2020 PADME have allowed us to optimise running conditions and detector reconstruction <u>https://arxiv.org/abs/2205.03430</u> (accepted JINST)
- We've created a detailed and reliable Monte Carlo simulation of the beam-line <u>https://arxiv.org/abs/2204.05616v1</u> (accepted JHEP)
- We've performed the most precise measurement of $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma))$ below 1 GeV (article on its way)
- We're preparing for Run III during which we hope to shine light on the X17

Thank you for your attention and turn the dark on!

Data Taking

- Two runs in three configurations since installation in Sept. **2018**
 - Run 1a) (Oct 2018-February 2019)
 - Secondary *e*⁺ from *e*⁻ on Cu target before the entrance of BTF
 - Run 1b) (February -March 2019)
 - Primary e⁺ from W-Re e⁺ converter immediately after e⁻ production
 - Run 2 (Sept 2020-Dec 2020)
 - primary *e*⁺ beam and improved beamline setup
- Acquired luminosity measurement:
 - Run1 = 7×10^{12} POT
 - Run2 = 5.5×10^{12} POT
 - Precision = 5%

250 ns bunch

28 kPoT

430 MeV

Run2

primary beam.

moved mylar window 280 ns bunch

Cross section measurement: run variation

ECal geometry

