Using artificial intelligence in the reconstruction of signals from the PADME electromagnetic calorimeter

Kalina Stoimenova Faculty of Physics, Sofia University

CALOR 2022 - 19th International Conference on Calorimetry in Particle Physics 16.05 – 20.05.2022

* partially supported by BNSF: KP-06-D002_4/15.12.2020 within MUCCA, CHIST-ERA-19-XAI-009

Outline

- The PADME experiment
- Signal simulation
- Signal description using neural networks
- DNN for signal parameter reconstruction
- Conclusion

- Small scale fixed target experiment
 - e⁺ @ Frascati Beam Test Facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter
 - Beam monitoring system

Active target

Polycrystalline diamonds

ŧ

a, [fc]

250

- 100 μm thickness:
- 16 × 1 mm strip and X-Y readout in a single detector
- Graphite electrodes using excimer laser

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at E_{beam} = 550 MeV):
 - **PVeto**: positrons with 50 MeV < p_{e+} < 450 MeV
 - **HEPVeto**: positrons with 450 MeV < p_{e^+} < 500 MeV
 - **EVeto**: electrons with 50 MeV < p_{e+} < 450 MeV
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

- Custom SiPM electronics, Hamamatsu S13360 3 mm, 25μm pixel SiPM
- Differential signals to the controllers, HV, thermal and current monitoring
- Online time resolution: ~ 2 ns
- Offline time resolution after fine T₀ calculation better than 1 ns

PADME calorimeter

<figure>

Two photon showers

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation:
 50 100 µm black tedlar foils
- Scintillation light decay time O(300 ns)
- HZC 1912 PMTs
- Calibrated with ²²Na source and cosmics

Calorimeter readout system

- CAEN V1742 digitizer, DRS4 chip operated at 1 GS/s
- Storage capacitor array, 1024 samples maximum
- Recording the complete waveform upon a beam based trigger signal
- Common choice for almost all PADME detectors

Signal simulation

- Generation of noise + several waveforms (predefined maximum number)
- Noise taken as white noise gaussian amplitude at random time

- Pulse generation currently taken as difference between two exponents $A(t) = A_0 \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right) = A_0 e^{-\frac{t}{\tau_1}} \left(1 - e^{-\frac{t}{\tau}} \right) \quad , \quad \tau = \frac{\tau_2 \tau_1}{\tau_1 - \tau_2}$
- τ_1 decay time of the signal

NN signal description

Classification NN

- Al to identify the number of pulses in a waveform
- Simple output up to five pulses
- Trained on 100 000 events

Signal and noise description

- Convolutional autoencoder
- Input and output size 1024
- Noise in the signal regions significantly suppressed

DNN pulses identification

- Labels (desired output) are vectors of the same length as the input data
 - 1024 samples; almost all values are zeroes
 - If a signals starts at t_i , the value of the label at t_i is the signal's amplitude
- CNN with the same structure as for the unsupervised learning
 - i.e. if it can filter the noise, it can recognize what a signal is :)
- Reconstruction program to scan and identify the signals both in the labels (i.e. the desired output) and the produced ML output – generator/network comparison

DNN performance

- Efficiency for lower numbers of signals are higher because of unrecognized signals from events with higher numbers
- For closely located signals: Most of the missed events are with dt < 10 ns
- Most of the events with amplitudes < 50mV are not identified

Matched and missed events based on time difference

Time reconstruction

- Δt distribution is symmetric, non-gaussian tails exist
 - $\sigma \sim 520$ ps, RMS ~ 3.2 ns
- If the time of the true hit and the found hit is < 2 ns, we consider the identification successful

Amplitude reconstruction

- Strong correlation between real and reconstructed amplitude
 - The difference between them increases linearly
 - Single additional calibration constant is "sufficient" \rightarrow energy scale
- Non-linear part for the small amplitudes

Conclusions

- PADME calorimetric system has to provide reliable energy reconstruction and shower separation
- Different ML topologies for signal reconstruction tested
 - Classification \rightarrow number of signals
 - Unsupervised learning \rightarrow noise filtration
 - Regression methods \rightarrow signal parameters estimation
- Al performance assessed trough interpretability and explainability of the results
- Time resolution and amplitude reconstruction give promising results

1-Dimensional Convolutional Neural Networks

17

Supervised autoencoder

- Moving to supervised learning
- Labels (desired output) are vectors of the same length as the input data
 - 1024 samples
 - Almost all values are zeroes
 - If a signals starts at t_i , the value of the label at t_i is the signal's amplitude
- CNN with the same structure as for the unsupervised learning
 - i.e. if it can filter the noise, it can recognize what a signal is :)

0 871 0 871 0 0 0