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● DNN for signal parameter reconstruction
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The PADME ExperimentThe PADME Experiment
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• Small scale fixed target experiment

– e+ @ Frascati Beam Test Facility 

– Solid state target 

– Charged particles detectors

– Calorimeter

– Beam monitoring system
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Active targetActive target
PADME Diamond

CCD ≈ 12 μm

Polycrystalline 
diamonds 
● 100 mm thickness:
● 16 × 1 mm strip and 

X-Y readout in a 
single detector

● Graphite electrodes 
using excimer laser



Charged particle detectorsCharged particle detectors
● Three sets of detectors detect the charged particles 

from the PADME target (at Ebeam = 550 MeV):
– PVeto: positrons with 50 MeV < pe+ < 450 MeV
– HEPVeto: positrons with 450 MeV < pe+ < 500 

MeV
– EVeto: electrons with 50 MeV < pe+ < 450 MeV

● 96 + 96 (90) + 16 (x2)   scintillator-WLS-SiPM RO 
channels

● Segmentation provides momentum measurement 
down to ~ 5 MeV resolution

● Custom SiPM 
electronics, Hamamatsu 
S13360 3 mm, 25mm 
pixel SiPM

● Differential signals to 
the controllers, HV, 
thermal and current 
monitoring

● Online time resolution: ~ 2 ns
● Offline time resolution after fine T0 calculation – better than 1 ns

Time calibration with
Bremsstrahlung events
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PADME calorimeterPADME calorimeter
Muon track Two photon showers

ECAL: The heart of PADME
● 616 BGO crystals, 2.1 x 2.1 x 23 cm3

● BGO covered with diffuse reflective TiO2 
paint 
– additional optical isolation:                    

50 – 100 μm black tedlar foils

● Scintillation light decay time –    O(300 ns)

● HZC 1912 PMTs

● Calibrated with 22Na source and cosmics
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PADMEPADME

Active target
(Lecce & University 

Salento)

Veto scintillators
(University of Sofia, Roma)

Dipole magnet
(CERN TE/NSC-MNC)

C-fiber window

TimePIX3 array
(ADVACAM, LNF)

PbF2 calorimeter
(MTA Atomki, Cornell 

U., LNF)

BGO calorimeter
(Roma, Cornell U., 

LNF, LE)

1m

Mimosa beam monitor
(LNF)



Calorimeter readout systemCalorimeter readout system
● CAEN V1742 digitizer, DRS4 chip operated at 1 

GS/s
● Storage capacitor array, 1024 samples maximum
● Recording the complete waveform upon a beam 

based trigger signal
● Common choice for almost all PADME detectors
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Signal simulationSignal simulation
● Generation of noise + several waveforms (predefined maximum number)
● Noise taken as white noise – gaussian amplitude at random time 

● Pulse generation – currently taken as difference between two exponents

● τ1 – decay time of the signal
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● Rise time 10ns; 
fall time 300 ns

● Gaussian noise
● Amplitude > 20 mV
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NN signal descriptionNN signal description

● AI to identify the number of 
pulses in a waveform

● Simple output – up to five pulses
● Trained on 100 000 events

Classification NNClassification NN

● 100% signal discrimination 
above 50 ns difference

● 90% above 30 ns

Signal and noise descriptionSignal and noise description
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● Convolutional autoencoder
● Input and output size 1024
● Noise in the signal regions 

significantly suppressed 
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● Labels (desired output) are vectors of the same length as the input data
● 1024 samples; almost all values are zeroes 

● If a signals starts at t
i
, the value of the label at t

i
 is the signal’s amplitude

● CNN with the same structure as for the unsupervised learning

● i.e. if it can filter the noise, it can recognize what a signal is :)
● Reconstruction program to scan and identify the signals both in the labels (i.e. the desired output) and 

the produced ML output – generator/network comparison

DNN pulses identificationDNN pulses identification

Input waveform
ML output 

Input waveform
ML output 
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DNN performance DNN performance 

● Efficiency for lower numbers of signals are higher 
because of unrecognized signals from events with 
higher numbers

● For closely located signals: Most of the missed events 
are with dt < 10 ns 

● Most of the events with amplitudes < 50mV are not 
identified
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Time reconstructionTime reconstruction

● Δt distribution is symmetric, non-gaussian tails exist
– σ  ~ 520 ps, RMS ~ 3.2 ns 

● If the time of the true hit and the found hit is < 2 ns, we consider 
the identification successful
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Amplitude reconstructionAmplitude reconstruction
● Strong correlation between real and reconstructed amplitude

– The difference between them increases linearly
– Single additional calibration constant is “sufficient” → energy scale  

● Non-linear part for the small amplitudes

The mean deviation between the reconstructed and the 
original amplitude is close to 0 for amplitudes between 
50 and 500 mV
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●  PADME calorimetric system has to provide reliable energy reconstruction 
and shower separation

● Different ML topologies for signal reconstruction tested
– Classification → number of signals

– Unsupervised learning → noise filtration

– Regression methods → signal parameters estimation

● AI performance assessed trough interpretability and explainability of the 
results 

● Time resolution and amplitude reconstruction give promising results

ConclusionsConclusions
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  1-Dimensional Convolutional Neural Networks1-Dimensional Convolutional Neural Networks

Output layerHidden  layers

(...)

Convolution Fully connected 
layerInput layer
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Supervised autoencoderSupervised autoencoder

● Moving to supervised learning
● Labels (desired output) are vectors of the same length as the input data

– 1024 samples 
– Almost all values are zeroes 
– If a signals starts at ti, the value of the label at ti is the signal’s amplitude

● CNN with the same structure as for the unsupervised learning
– i.e. if it can filter the noise, it can recognize what a signal is :) 
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