First results from the PADME experiment - getting ready for dark sector studies -

Isabella Oceano^{*} on behalf of the PADME Collaboration

*Università del Salento, INFN Le

Rencontres de Moriond, Electroweak Interactions & Unified Theories

- PADME experiment
 - Testing the dark photon hypothesis
- Data taking
- $e^+e^- \rightarrow \gamma\gamma$ selection technique in PADME
- Annihilation cross section measurement
- Conclusions

Dark matter indications

- Galactic rotation curves
- Galaxy clusters & GR lensing
- Bullet Cluster
- Velocity dispersions of galaxies
- Cosmic Microwave Background
- Baryon Acoustic Oscillations
- Type Ia supernovae distance measurements
- Big Bang Nucleosynthesis (BBN)
- Structure formation
- Several other hints

A new gauge boson

Candidates challenged by LHC and direct detection experiments 10-39 10^{-3} 10^{-40} 10^{-4} SIMPLE (2012) 10-41 section [cm²] 10-42 10-43 10-44 $\begin{array}{c} 10^{-45} \\ 10^{-46} \\ 10^{-47} \\ 10^{-48} \end{array}$ 10-45 Neutrinos 10^{-10} 10⁻¹¹ dWIA 10⁻¹² M 10-49 10-13 10^{-14} 10^{-50} 10 100 1000 WIMP Mass [GeV/c²]

- There are many possible ways to introduce the Dark Matter into the Standard Model
- A simple way to go beyond the SM
 - $SU(3) \times SU(2) \times U(1)_Y \times U(1)_D$
 - A new gauge symmetry $U(1)_D$ and a new photon: A'
 - Only dark matter charged under $U(1)_D$
 - Several mechanisms may be responsible for the A' mass (Higgslike, Stuckelberg)

• Weak interaction with SM through ϵ

$$L_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

SM

Kinetic mixing coefficient

A' production and decay channels

Production mechanism allowed

I.Oceano

Decays

- To SM particles if $2M_{DM} > M_{A'} > 2m_e$
- To DM (invisible) particles if $2M_{DM} < M_{A'}$

Constraints from searches

Visible search technique

- bump-hunting and/or detached vertexing
- fixed target experiments
- Beam dump experiments
- colliders

Invisible search technique

- missing mass
- missing momentum
- missing energy

The dark photon

Moriond EW 6

Constraints from searches

Visible search technique

- beam dump experiments
- fixed target experiments with bump-hunting
- fixed target experiments with detached vertexing
- colliders

Invisible search technique

- missing mass
- missing momentum
- missing energy

Positron Annihilation into Dark Matter Experiment

• e^+ fixed target experiment searching for dark photons with $M_{A'} \le 23.7 \text{ MeV}$

beam

A' production and decay

- $e^+e^- \rightarrow \gamma A'$
- A' invisible decay

A' detection

 Missing mass technique used Goal: 4 × 10¹³ POT (Positrons On Target)

Experimental setup

- LINAC e^+ beam: energy $\leq 550 \text{ MeV}$
 - 50 Hz pulsed beam
 - 300 ns pulse maximum duration
 - ~10000 e+/pulse
- Diamond active Target: $2 \text{ cm} \times 2 \text{ cm} \times 100 \mu \text{m}$
- Dipole magnet MBP-S: $B \le 1.4 T$
- Veto system: >200 plastic scintillator bars
- Main calorimeter ECAL: 616 BGO crystals
- Small Angle Calorimeter SAC: 25 PbF₂ crystals

PADME data taking

Annihilation cross section measurement

A candle QED process:

source of photons with energy in the range of interest for the signal
σ(e⁺e⁻ → γA') proportional σ(e⁺e⁻ → γγ) × δ(M_{A'})
physics monitor / measurement of the number of POT

Why a measurement of the cross section ?

To be sure we understand ECAL, the key PADME detector below 500 MeV only a set of measurements with 20% error

Sensitive to extra contribution from new physics at sub-GeV scale (ALPs) ?

PADME dataset for annihilation cross section

- 7 runs from Runll representative of full statistics
 - N_{POT} stable in time
 - Total of 4×10^{11} POT
 - Few percent of the full data sample
 - $E_{beam} = 430 \text{ MeV}$
- N_{POT} between 19k and 36k e⁺/bunch
- Bunch length ~280 ns, different time profile from run to run
- + 2 background runs [target out of the beam line] for beam background subtraction

 $e^+e^- \rightarrow \gamma\gamma$

Annihilation $\gamma\gamma$ signature and selection

 $e^+e^- \rightarrow \gamma\gamma$

Counting annihilation events - 2 γ selection

Photon selection efficiency

Each annihilation photon $\Delta E = E_{\gamma} - f(\theta_{\gamma}) \sim 0 \text{ MeV}$

I.Oceano

 $e^+e^- \rightarrow \gamma \gamma$

Moriond EW 14

Counting annihilation events - I γ selection

With a single photon selection: (either in the inner or outer ring) Exploiting

1)
$$\Delta E = E_{\gamma} - f(\theta_{\gamma}) \sim 0 \text{ MeV}$$

2) $M_{missing}^2 \sim 0 \text{ MeV}^2$

- Large background to be subtracted,
 - Templates for beam related background from no-target data
 - Templates for pileup from MC
 - Different shapes in ΔE and M_{miss}^2 useful for systematics assessment

Cross section measurement

• PADME absolute measurement of $e^+e^- \rightarrow \gamma\gamma$ process

$$E_{beam} = 430 \text{ MeV}$$

 $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.930 \pm 0.029 \text{ (stat)} \pm 0.057 \text{ (syst)} \pm 0.020 \text{ (target)} \pm 0.079 \text{ (lumi) mb}$

• QED @NLO $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.9573 \pm 0.0005 \text{ (stat)} \pm 0.0020 \text{ (syst) mb}$

Measurement stability vs ϕ sector

Rather uniform cross section measurement in spite of sector-dependent yield and photon selection efficiency

Residual differences, above statistical fluctuations, used to quote a systematic uncertainty arising from "detector defects"

Measurement stability vs beam setting

State of the art for annihilation in flight

Conclusion

- PADME in run II collected 6×10^{12} POT, about half of the planned statistics, with an improved beam configuration.
- The candle QED process $e^+e^- \rightarrow \gamma\gamma$ has been studied with 4×10^{11} POT

 $\sigma(e^+e^- \to \gamma\gamma(\gamma)) = 1.930 \pm 0.029 \text{ (stat)} \pm 0.099 \text{ (syst) mb}$

The inclusive cross section measurement agrees with the QED prediction at NLO within ~5% total error

 $\sigma(e^+e^- \to \gamma\gamma(\gamma)) = 1.9573 \pm 0.0005 \text{ (stat)} \pm 0.0020 \text{ (syst) mb}$

- The uncertainty is dominated by the systematics on the number of POTs
- Data show that a compelling task is the control of beam related background
- The result gives confidence on a detailed understanding of the key detectors.
- Assuming no new physics contributions, the annihilation process measures the luminosity with ~3% precision, more than enough for the search of an invisible A'
- Ready for dark photon searches! Stay tuned

BACKUP

[1]10.1007/978-3-030-62519-1 [2]10.1088/1361-6471/ab4cd2

Visible and invisible limits

I.Oceano

The dark photon

Missing mass signature

Signal

One photon in ECAL

SM backgrounds

- Bremsstrahlung
 - One photon in ECAL + one positron in PVeto
 - If $E_{\gamma} > 1$ MeV and $E_{beam} = 550$ MeV, $\sigma(e^+N \rightarrow e^+N\gamma) = 4000$ mb HEPVeto

Annihilation

 $e^+e^- \to \gamma\gamma$

Simulation Events/5 MeV² M²_{miss} no cuts M²_{miss} cuts $e^+N \rightarrow e^+N\gamma$ Positron inefficiency $e^+e^- \rightarrow \gamma\gamma(\gamma)$ 10² Photon inefficiency _ 10 -300 -200 100 200 300 500 60 M²_{miss} (MeV) -100 0 400 600

Moriond EW 23

FCAL

PVeto

I.Oceano

PADME

Annihilation cross section measurement

Method	Yield	cross section [mb]
$\Delta \phi$	276700 ± 530	1.981 ± 0.031
ΔE_{in}	375600 ± 3000	1.921 ± 0.028
ΔE_{out}	365700 ± 4300	1.914 ± 0.028
$M^2_{miss, in}$	369400 ± 1100	1.889 ± 0.027
$M^2_{miss, out}$	365200 ± 8500	1.912 ± 0.048

Δ φ **[Deg]** Moriond EW 24

 $e^+e^- \rightarrow \gamma\gamma$

Annihilation cross section measurement I

Annihilation cross section measurement

	Method	Yield	cross section [mb]
Selection acceptance obtained from generator level photons preprocessed to merge particles unresolved due to calorimeter granularity + clusterisation algorithm	$\Delta \phi \ \Delta E_{in} \ \Delta E_{out} \ M_{miss, in}^2 \ M_{miss, out}^2$	276700 ± 530 375600 ± 3000 365700 ± 4300 369400 ± 1100 365200 ± 8500	$\begin{array}{c} 1.981 \pm 0.031 \\ 1.921 \pm 0.028 \\ 1.914 \pm 0.028 \\ 1.889 \pm 0.027 \\ 1.912 \pm 0.048 \end{array}$
Extrapolating to full phase With NLO QED generator	Correcting for photon selection efficiency From tag-and-probe		
	inner rin outer rin	g efficiency g efficiency	$0.731 \pm 0.009 \\ 0.714 \pm 0.006$
Measuring total number of POT With the active diamond target	acce	ptance	0.06424 ± 0.00025
	N N	POT $V_{e/S}$	4×10^{11} $0.0105b^{-1}$
Calibrated with a calorimeter with high precision			

Fiducial region: 115.8 < R < 285 mm