

The PADME Experiment

Elizabeth Long Sapienza Università di Roma/INFN Sezione di Roma

18/05/21

Elizabeth Long - 14th International Conference on Interconnections between Particle Physics and Cosmology

1

The Dark Photon

- Among the simplest SM extensions, "portal" models are good candidates for DM
- These models predict the existence of a new mediator particle which would couple both to dark sector particles and (feebly) to the SM
- The dark photon (A') is a massive vector portal, SM-A' coupling $\epsilon \ll 1$ => hidden
- A dark photon could explain other anomalies eg:
 - Muon g-2
 - ATOMKI anomaly

2/6/2021

Dark Sector Production at PADME

- Positron Annihilation to Dark Matter Experiment:
 - Associated production: $e^+e^- \rightarrow \gamma A'$
 - A'-strahlung: $e^+N \rightarrow Ne^+A'$
 - Resonant annihilation: $e^+e^- \rightarrow A'$
- Production mechanisms are identical for both *A*' and alps
- Up to 550 MeV e⁺ beam on diamond target

 $\frac{\sigma(e^+e^- \to A'\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma\gamma)} \times \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \epsilon^2 \times \delta$

 δ = phase space correction, analytically calculable

Models and Decays

- Dark photons: $e^+e^- \rightarrow \gamma A'$
 - Final states:
 - Visible $A' \rightarrow e^+e^-$
 - Invisible $A' \rightarrow \chi \chi$

Current constraints

- Dark photons: $e^+e^- \rightarrow \gamma A'$
 - Final states:
 - Visible $A' \rightarrow e^+e^-$
 - Invisible $A' \rightarrow \chi \chi$

The PADME detector

- The PADME detector is made of:
 - Active diamond target (**100**μm)
 - Electromagnetic Calorimeter (616 BGO crystals): measures position & energy of annihilation photons
 - Small Angle Calorimeter (25 PbF_2 crystals): measures bremsstrahlung photons
 - 3 charged-particle vetoes (Positron Veto, Electron Veto, High Energy Positron Veto) placed inside/outside magnetic field to detect bremsstrahlung
- It's installed in the Beam Test Facility (BTF) hall at the National Laboratories of Frascati (LNF)

PADME beam conditions:

- E_{beam} up to 550 MeV
- Up to $30k e^+$ per bunch
- Up to 320 ns bunch length
- 49 bunches/s

Dark Sector Detection at PADME: invisible decays

- PADME was designed to search for invisible $A' \rightarrow \chi \chi$ decays
- The signal is one standard model photon (from the production) in the electromagnetic calorimeter and nothing elsewhere
- It's a bump-hunting experiment: searching for an excess of events above the background
- The ΔM_{miss}^2 distribution then gives access to $M_{A'}$:

$$M_{A'}^2 = \left(P_{beam} + P_{e^-} - P_{\gamma}\right)^2$$

ECal

Dark Sector Detection at PADME: visible decays

- Using the vetoes as spectrometers gives us access to visible final states
- Of particular interest are:
 - Resonant *A*' production with $A' \rightarrow e^+e^-$
 - $e^+e^- → 3(e^+e^-)$ via dark Higgs: standard model background is supressed by α⁶, giving a high BSM signal/SM background ratio

Background to invisible decays

- Two principle sources of background:
 - Bremsstrahlung in the target: missing *e*⁺
 - 2 (3) photon annihilation where 1 (2) of the photons goes undetected
- Bremsstrahlung suppression:
 - Positron veto detects the positron
 - Very fast Small Angle Calorimeter (SAC) detects the photon (usually soft & forward)

Background to invisible decays

- Two principle sources of background:
 - Bremsstrahlung in the target
 - ⁻ 2 (3) photon annihilation where 1 (2) of the photons goes undetected
- Annihilation background suppression:
 - 2 in-time photons in Electromagnetic Calorimeter (ECal)
 - Maximise granularity, angular coverage and energy resolution of ECal

Projected Physics Reach: Invisible decays

• The mass reach of PADME is governed by the beam energy

$$\sqrt{s} = \sqrt{2m_e * E_{beam}}$$

- At maximum $E_{beam} = 550$ MeV, maximum $m_{A'} < 23.7$ MeV
- The reach in coupling strength depends on pile-up and beam background
- With 10^{13} total positrons on target, $\epsilon > 10^{-3}$

Data collected

- Detector was fully installed in Sept. 2018
- Run 1 (Oct 2018-March 2019) had 2 configurations:
 - Secondary e^+ beam (before 21/2/19):
 - positrons produced by e⁻ beam on Cu target before the entrance of the BTF hall
 - Primary *e*⁺ beam (after 21/2/19):
 - positrons produced directly in the LINAC by a W-Re e⁺ converter placed just after the e⁻ production point
- Run 2 (Sept 2020-Dec 2020) used the primary e⁺ beam and improved beamline setup
- Acquired luminosity measurement:
 - Run1 = 7×10^{12} POT
 - Run2 = 5.5×10^{12} POT
 - Precision = 5%

Data quality checks

- 2 photon annihilation energy spectrum shows:
 - Beam background at low $E_{\gamma_1} + E_{\gamma_2}$ is well understood and very distinct from signal
 - Going to primary beam is extremely effective in improving $E_{\gamma_1} + E_{\gamma_2}$ resolution due to $\sim 1000 \times$ lower beam background
 - **Optimising beam setup decreases** the beam background in $\gamma\gamma$ events by $\sim 10 \times$ Run 1

Run1

Run2

Data quality checks

- POT measured is linear wrt no.
 γγ events => luminosity is well measured & both ECal & target are operating in linear regime
- Target response is linear with POT: target was designed for
 5000 POT but is still linear at
 35000 POT

Data quality checks

- Bremsstrahlung studies show:
 - We are able to match
 Bremsstrahlung e⁺ and γ
 - We are able to measure energy of γ and momentum of e⁺

Future studies

- We also intend to study the ⁸Be/⁴He X17 anomaly (A. J. Krasznahorkay, et al. Phys. Rev. Lett. 116, 042501, https://arxiv.org/abs/2104.10075v1)
- The e^+ energy needed to produce a 17 • MeV particle on resonance is 282 MeV
- LNF is the only facility in the world able to do this.

X17

19/05/21

⁴He^{*}

EM

ATOMKI PAIR

IPC

HAD

Resonant protor capture

Conclusions

- PADME was designed and constructed to search for a dark photon in e+e- annihilation
- There are a number of accessible models and final states available to PADME
- We have a good understanding of our detector a
- PADME collaboration is now performing physics analysis on data from Run2
- Further reading is available here:
 - M. Raggi and V. Kozhuharov, Proposal to Search for a Dark Photon in Positron on Target Collisions at DAΦNE Linac, Adv. High Energy Phys. 2014 (2014) 959802 [arXiv:1403.3041].
 - R. Assiro et al., Performance of the diamond active target prototype for the PADME experiment at the DAΦNE BTF, Nucl. Instrum. Meth. A 898 (2018) 105 [arXiv:1709.07081].
 - Characterisation and performance of the PADME electromagnetic calorimeter, JINST 15 T10003 (2020)
 [arXiv:2007.14240].
 - S. Ivanov and V. Kozhuharov, The charged particle veto system of the PADME experiment, AIP Conf. Proc. 2075 (2019) 080005.
 - A. Frankenthal et al., Characterization and performance of PADME's Cherenkov-based small-angle calorimeter, Nucl. Instrum. Meth. A 919 (2019) 89 [arXiv:1809.10840].

Backup

Phase space correction to cross section

• For $E_{beam} = 250 \text{ MeV}$, 500 MeV, 750 MeV, with $\epsilon^2 = 1 \times 10^{-6}$:

X17 Anomaly

• Internal Pair Creation shows a bump in opening angle spectrum, as measured by ATOMKI in Hungary

