

THE PADME DETECTOR

C.Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete 4-12/09/20

A VERY BRIEF INTRODUCTION

- No evidence of a dark matter (DM) particle in any dedicated experiment
- DM could live in a separate sector, wrt the sector where Standard Model (SM) particles live
- Dark sector (DS) theory
- A new interaction can be introduced: SM sector and DS interact through a vector boson mediator which we call dark photon (DP) or A'
- The coupling constant of the new interaction is $\epsilon << 1$
- Many models and many theories can be introduced
- We focus on DP models that allow the interaction between leptons and DP

DETECTION OF DARK PHOTON IN PADME

PADME is looking for the invisible decay of A' using a e⁺ beam on a target:

 $e^+e^- \rightarrow A' \gamma$

with known beam energy and target at rest. The momentum of photon γ in the final state must be detected to close the kinematic of the reaction.

- Main backgrounds: SM annihilation $e^+e^- \to \gamma\gamma,$ SM Bremsstrahlung $e^{+/-}$ N $\to e^{+/-}$ N γ
- A' could be produced by e⁺e⁻ annihilation, and observed as missing mass
- Only assumption: lepton coupling
- New limits on coupling for any particles produced in e⁺e⁻ annihilation can be obtained (dark photon, dark Higgs, Axion Like Particles)

MMiss² for different M_A,

$$M_{Miss}^2 = (\boldsymbol{P}_{beam} + \boldsymbol{P}_e - \boldsymbol{P}_{\gamma})^2$$

$\mathsf{D}\mathsf{A}\Phi\mathsf{N}\mathsf{E}\mathsf{A}\mathsf{C}\mathsf{C}\mathsf{E}\mathsf{L}\mathsf{E}\mathsf{R}\mathsf{A}\mathsf{T}\mathsf{O}\mathsf{R}\ \mathsf{C}\mathsf{O}\mathsf{M}\mathsf{P}\mathsf{L}\mathsf{E}\mathsf{X}$

- I. PADME is installed in the Beam Test Facility (BTF) of the Laboratori Nazionali di Frascati
- **2**. BTF is part of the DA Φ NE accelerator complex
- 3. LINAC can inject particles into the storage ring (DA Φ NE) or provide beam to the BTF
- 4. DA Φ NE is a positrons/electrons collider (E^{cm}_{Φ} = 1.02 GeV)
- 5. At the Beam Test Facility (BTF) users can get electron/positron beams generated by the LINAC. Two beam lines are available

	e^{-}	e^+
$Maximum beam energy (E_{beam})$	$750 { m MeV}$	$550 { m MeV}$
LINAC energy spread	0.5%	0.5%
Typical charge	2 nC	$0.85 \ \mathrm{nC}$
Bunch lenght	$1.5-200 \ {\rm ns}$	1.5-200 ns
LINAC repetition rate	1-50 Hz	$1-50~\mathrm{Hz}$
Typical emittance	$1 \mathrm{~mm} \mathrm{~mrad}$	$\sim 1 \text{ mm mrad}$
Beam spot size	$< 1 \mathrm{mm}$	$< 1 \mathrm{mm}$
Beam divergence	$1-1.5 \mathrm{\ mrad}$	$1-1.5 \mathrm{\ mrad}$

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

EXPERIMENTAL HALL & BEAMLINE

- PADME is installed on beam line I (BTFI) of the LNF Beam Test Facility
- PADME nominal beam properties: e⁺ energy 550 MeV, multiplicity ~ 20k e⁺/bunch, bunch duration 200 ns, frequency 49 Hz
- $_{\circ}~$ A beam with these properties allows exploring dark photon masses $m_{A^{'}} \leq 23.7~$ MeV

THE DETECTOR

- POSITRON BEAM, ~20k BGO e⁺ per bunch
- ACTIVE DIAMOND TARGET, 100 μm thickness
- MIMOSA, pixel tracker
- DIPOLE MAGNET, 0.45 T
- VACUUM VESSEL, 10⁻⁵ mbar
- CHARGED PARTICLES VETO SYSTEM, plastic scintillators

- ELECTROMAGNETIC CALORIMETER (ECal)
- PBF₂ SMALL ANGLE CALORIMETER (SAC)
- Positron beam
- MONITOR (TimePix3)
- e⁺ high energy **Dipole magnet** veto e+ Vacuum vessel beam monitor e⁺ veto SAC e beam Active target e⁻ veto ECAL ~ 4.5 m

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

DIAMOND ACTIVE TARGET (INFN-LE)

- CVD (Chemical Vapour Deposition) 20 × 20 × 0.1 mm³ policrystal diamond
- 16 × 16 connected graphitic strips (x and y), made in Lecce
- Active target: it gives information about incoming beam (position, size and intensity)
- Very good linearity of collected charge with respect to number of e⁺/bunch
- With the present front-end electronics, it can count from 5k

BEAM MONITOR, EXAMPLE

MIMOSA

- MIMOSA-28: monolithic pixel tracker in vacuum (first time)
- 20.8 μm pitch, 20.2 \times 22.7 mm^2 area
- It gives information about beam position and divergence
- The best performance of MIMOSA is obtained with a multiplicity of ~ 300-1000 particles per bunch: however, preliminary studies show that the detector can give information about the beam up to 3k particles per bunch
- It cannot be used during data taking (it would deteriorate the beam), but can be used before to setup the beam: a step motor moves target and MIMOSA on position

TARGET REGION

POSITRON/ELECTRON VETOES (SOFIA UNIVERSITY)

- 96 (e⁻) + 90 (e⁺) + 16 (HEP, high energy positron) scintillating bars
- $| \times | \times | 7.8 \text{ cm}^3$ plastic scintillators
- 1.2 mm WLS fibers glued to each scintillator
- SiPM Hamamatsu S13360 3 × 3 mm² × 25 μm cell
- e⁻/e⁺ vetoes in vacuum (10⁻⁵ mbar) and magnetic field (~ 0.45 T)
- They are used to veto Bremsstrahlung events

ECAL

- 616 2.1 × 2.1 × 23 cm³ BGO crystals, scintillation light, ~300 ns decay time, coupled to HZC Photonics XP1911 PMT
- It must detect the γ in the final state, to close the kinematic
- Cylindrical shape of radius ~ 30 cm, central hole of 10.5 × 10.5 cm² (Bremsstrahlung rate too high for BGO)
- Angular coverage: [15.7, 82.1] mrad
- Readout sampling: I GHz, 1024 samples

Scintillating units

SAC

- 25 3 × 3 × 14 cm³ PbF₂ crystals (Cherenkov)
- Fast signals (~2 ns), in order to sustain the rate (~100 MHz) of Bremsstrahlung radiation
- Coupled to fast Hamamatsu RI3478UV PMT
- Readout sampling: 2.5 GHz, 1024 samples
- Angular coverage: [0, 18.9] mrad
- Two independent calibrations (beam and cosmic rays) were performed

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

TIMEPIX3

- Single sensor: 256 × 256 matrix, pixel pitch 55 μ m
- Whole detector: I2 sensors (786 432 pixels), 8.4 × 2.8 cm²
- Monitor for the not interacting e⁺ beam
- It can measure position, time and energy of each particle
- So far, the biggest TimePix3 array used for particle physics

BEAM STRUCTURE FROM TIMEPIX3

PADME – TRIGGER AND DAQ (ROMAI/ROMA 3)

- Two kinds of board provide trigger in PADME:
- CPU trigger board (6 inputs)
- Trigger distribution boards (2 × 32 channels)

CPU trigger boards generate signal in 3 configurations:

- I. BTF bunch, for physics runs
- 2. Cosmics, for calibration runs
- 3. Random, for pedestal studies

Data are collected by a two-level readout system:

- L0 PCs collect data from every board and perform zero suppression (if desidered)
- o LI PCs perform event merging and process rawdata into .root files

COMMISSIONING DATA TAKING

Main technical purposes:

- Online monitor and detector control system for each subdetector
- Calibration for each detector
- Best beam configuration
- Background studies
- Information about POT (positron on target)
- Collect a sample of order of 10¹² POT

CALIBRATION STUDIES

- **Target**: calibrated at the end of commissioning, very good reproducibility and linearity
- **ECal**: first order calibration on scintillating units before calorimeter assembly. Cosmic ray calibration used to check units calibration
- **SAC**: beam calibration performed on 9/25 crystals. The results from the beam calibration were cross-checked with cosmic rays calibration

TARGET: COLLECTED CHARGE VS BEAM MULTIPLICITY (EVALUATED BY LEAD GLASS CHERENKOV CALORIMETER)

SAC: CALIBRATION CONSTANTS OBTAINED THROUGH BEAM CALIBRATION (BLUE) AND THROUGH COSMIC RAYS CALIBRATION (ORANGE)

ECAL PERFORMANCE: CR CALIBRATION

- CR used to monitor the detector during data taking, and allowed testing the reliability of the ²²Na source calibration
- Two plastic scintillators were placed above and below the calorimeter
- Vertical CR rays were selected, requiring 3 crystals in the same column
- Charge distribution were fitted with a Landau distribution: MPVs were extracted from the fit
- The equalization obtained from of ²²Na source measurements for all the scintillating units is better than 11%
- Scintillating units efficiency was also tested by CR: average efficiency is close to 100%

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

Scintillating units efficiency distribution

ECAL PERFORMANCE: CLUSTERING

- Seed: SU with maximum energy
- Cluster: 5 × 5 matrix around seed
- Cluster SU must be in time (±10 ns around seed time)
- SU charge must be > E_{thr} (I MeV)

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

- Single particle run @ 490 MeV pointing to the calorimeter for single hit reconstruction
- Multihit reconstruction: template fitting (work in progress)

UNDERSTANDING BEAM BACKGROUND

- Observation of an unknown source of beam-induced background during July 2019
- The main cause for beam background seemed to be due to the beam hitting beryllium window separating BTF vacuum from PADME vacuum.
- Beam energy resolutions incompatible with the measured beam spot
- Background energy distribution in data is very similar to MonteCarlo (MC) one when using a beam with an energy resolution
 of 1.5 MeV
- A new MC simulation also introduced the magnet geometry of the beamline and the target support

C. Taruggi – ICNFP 2020, Conference Center of the Orthodox Academy of Crete

⁸Be WINDOW REMOVAL AND PRIMARY BEAM

- The beryllium window separating BTF vacuum from PADME vacuum was removed at the end of July 2019
- Unfortunately, the window broke during the removal, forcing a full decontamination of the experimental hall and the dismantling of the beamline
- For this reason, the collaboration resumed all the planned activities with a delay of ~I year
- A Mylar window has been used in place of the ⁸Be window: Mylar needs to be substituted more often, but it's not toxic
- During July 2020, the collaboration mainly worked on another beam configuration, in order to obtain less beam induced background
- Secondary beam: positrons are obtained by the collision of accelerated electrons on a target and then selected in energy (maximum energy: 550 MeV)
- **Primary beam**: positrons are accelerated to the desired energy after the production (maximum energy: 490 MeV)

CONCLUSIONS

- PADME searches for the dark photon, the possible mediator of a new interaction between Standard Model particles and dark matter particles
- The closed kinematic of the experiment allows the search for dark photon using the missing mass distribution from the annihilation of a 550 MeV positron beam on a diamond target
- On 4/10/18 PADME started the commissioning data taking
- The first data taking showed how reliable the DAQ system is, but also a beam background that must be kept under control
- A failure in the beamline postponed the final calibrations to the summer of 2020
- A test beam during July '20 provided calibration data and a better beam background control
- A new physics run is expected during fall 2020