Searching for the Dark Photon with the PADME Experiment

35th International Physics Congress of the Turkish Physical Society
Bodrum, Turkey, September 4-8 2019

Simeon Ivanov/Sofia University
For the PADME Collaboration

Supported by BG-NSF grant DN08-14/14.12.2016
Dark Matter: Evidence and Models

- Evidence
 - Galactic rotation curves
 - Cluster velocity distributions
 - Gravitational lensing
 - Intergalactic hot gas

- Possible Explanations
 - MAssive Compact Halo Objects
 - MOdified Newtonian Dynamics
 \[GMm/r^2 = m\mu(a/a_0)^* a \]
 - New physics: Weakly Interacting Massive Particle models
A DM Model: The Dark Sector

- A Dark Sector (DS) of particles neutral to SM with new “hidden” interactions
- Portals are possible mediator particles of different forms (scalars, fermions, vectors, axions) interacting weakly with the two sectors
- The DM can be the mediator, or a DS particle coupled to a portal via hidden interaction; different DM portals can co-exist
- Reasons to consider it:
 - Wide range of mass and coupling ranges allowed
 - Can explain other physics problems: muon g-2 anomaly, 8Be anomaly, etc.
 - The vector portal DS model is among the most tractable models, theoretically and experimentally
The Minimal DS Model: The Dark Photon

- Minimal extension of the SM:
- DS adding single additional U(1) Symmetry
- A single vector mediator particle coupled to the two sectors: the DP
- Can appear anywhere alongside ordinary photons, e.g. annihilation, bremsstrahlung, etc.
- Can address g-2, abundance of antimatter in cosmic rays, DM scattering signals
- If DP is the lightest DS particle, the model is dependent only on two parameters:
 - Coupling constant
 - Mediator mass
The Dark Photon: A Search with PADME

- Missing mass method for decays to the invisible state from measurements of initial and final state:
 \[M_{\text{miss}}^2 = (p_{e^+} + p_{e^-} - p_\gamma)^2 \]
- Positron initial state is determined by the accelerator properties
- \(A' \) is a product of \(e^+e^- \) collisions from positron beam on a thin, low-Z target, tuned for optimal annihilation and bremsstrahlung cross-sections
- Background elimination is key to detecting the signal

Invisible decays:

Background sources:

Bremsstrahlung

SM annihilation

Positron beam!
The PADME Experiment: An Overview

- Positron beam arrives from BTF@DAΦNE
- Positron bunch strikes active target
- Magnetic field deflects positrons and electrons onto the charged particle detectors
- Calorimeters detect gamma emissions from annihilation and bremsstrahlung events
- Charged particle veto provide timing and e⁺ momentum data, allowing to discriminate background and to measure final state with precision
- Reconstruction of the data allows a search for the invisible decay events

Searching for the Dark Photon with the PADME Experiment
Positron Source: BTF@DAΦNE

- Energy
 - 550 MeV
 - Under 1% energy dispersion
- 49 bunches per second
 (50 Hz, one shot used for testing)
- $\sim 25 \times 10^3$ positrons/bunch
- Pulse length from 10 ns to 200 ns
 (optimized for PADME)
- Beam quality: $\sigma_{xy} \sim 1$ mm,
 divergence ~ 1 mrad
- Able to provide the number of
 PoT we ask for: 4×10^{13}
The PADME Detectors: The Active Target

- **Role:**
 - Annihilation target
 - Provides single-bunch X and Y beam profiles
 - Provides information about the beam multiplicity

- **Characteristics:**
 - Diamond target, low Z-number improves signal/background ratio
 - Area: 20x20mm², thickness: 100um
 - Double-sided graphite strips as Ohmic electrodes
 - 1mm pitch, 0.15mm inter-strip distance, ~2.5kΩ
 - Constructed by the Padme team from the University of Salento/INFN Lecce

- **Front-end electronics**
 - Diamond target inner board, placed between two IDEAS boards
 - 16 channel AMADEUS chips provide readouts for 16X+16Y stripes

Searching for the Dark Photon with the PADME Experiment
Active Target: Performance

- Bunch profile measurements:
 - X, Y measurements with good resolution ($\sigma \sim 0.062\text{mm}$) and linearity of response
 - Time-based measurements to track the initial state through the course of the experiment

- Other bunch measurements
 - Provides estimates of the number of positrons on target per bunch (multiplicity)
The PADME Detectors: Charged particle veto

• Role:
 - Bremsstrahlung background suppression
 - Registration of visible decays

• Requirements:
 - Momentum resolution: 5 MeV or better
 - Time resolution: 1 ns or better

• Characteristics
 - Plastic scintillators 10x10x178 mm³, glued-in WLS fiber
 - 96 in e⁻ veto, 90 in e⁺ veto, 16 in HEP veto
 - Built by the Sofia University team

• Readout Electronics
 - SiPM front-end electronics inside vacuum chamber
 - Hamamatsu S13360 3x3 mm² 25 um cells
 - Power supply/analog readout modules
 - Designed and built at LNF
• Impulse resolution
 – Satisfactory results were shown to be achievable from the detector simulation studies
 – The simulation results were confirmed during initial testing before experiment commissioning to be within the required values

• Time resolution
 – Provisional data analysis shows that time resolutions of 750ps or better are achievable
 – Limited study of correlations between detectors indicate good results, but there is vast room for improvement.
The PADME Detectors: EM Calorimeters

- **Role:**
 - Main detector for annihilation events
 - Suppression of bremsstrahlung background

- **Requirements**
 - $\sigma_E \approx (1-2)%/\sqrt{E(GeV)}$
 - Cluster time resolution < 2 ns
 - Angular resolution < 2 mrad
 - Angular coverage: 20~93 mrad
 - Angular acceptance: 26~83 mrad

- Fast, central Cherenkov calorimeter for brems.

Searching for the Dark Photon with the PADME Experiment
EM Calorimeters: Details and Performance

- **ECal** - High energy resolution calorimeter
 - 616 BGO crystals 21x21x230 mm3
 - PMT Readout with HZC XP1911
 - Radius of 29 cm at 3.45 from target
 - Central hole (105x105 mm2) for SAC

- **SAC** - Small angle calorimeter
 - 25 Cherenkov PbF$_2$ crystals 30x30x140 mm3
 - 50 cm behind the ECal
 - PMT Readout with Hamamatsu R13478UV
 - Angular coverage: 0~20 mrad
• VME digitizers CAEN V1742
 - Sampling speed of 1-5 Gs/s
 - 12-bit ADC signal range
 - 29 VME Boards

• Triggers
 - 2 Trigger boards
 - CPU trigger system
 • Physics, cosmics and random signals
 • 2x32 channels trigger distribution boards
 - 2 Trigger levels
 • L0: Data collection from single boards without suppression
 • L1: Event merging and selection based on full event information

• Data volume
 - ~900 kB/bunch
 - ~60 MB/s sustained data throughput
Data Collection: **Run 1**

- Run 1 complete
 - November 2018 ~ February 2019
 - 2 weeks maintenance break at the end of 2018
 - Primary positrons since mid-February 2019
- 7×10^{12} PoT (≈270TB of data) collected, mostly from secondary positrons
- Clear beam background in data (much higher with secondary positrons)
- 20k e^+/bunch allows collection of 4×10^{13} events in 1.2 years
Data Analysis: Pile-ups and “catastrophic” e+

Temporal pile-ups
- Due to high event rate from large PoT/bunch
- Necessitates multi-hit reconstructions

“Catastrophic” e+
- e+ from beam non-gaussian energy tails may bend out of ideal orbits, producing particle showers from contact with beam pipe
Data Analysis: Strategy and Goals

- ECal and SAC absolute calibration with 1 positron per bunch
- Veto calibration for the momentum of bremsstrahlung (B) positrons from data with single positron per bunch and B-scan at fixed momentum
- Single channel time calibration
- Establishing the pile-up performance of each detector
- Beam background determination and development of mitigation measures
- High-performance multi-hits reconstruction for each detector based on digitized waveforms
 - Hit efficiency
 - Consecutive hit separation
 - Hit time resolution
PADME Experiment: Current Status

- The first experiment to search A’ in the invisible channel using missing mass/pulsed beam
- Stable positron beams from LINAC @ BTF
- Detectors and DAQ have reached expected performance
- Collected 7×10^{12} PoT from secondary positrons

Next:
- Finalize detector absolute calibration
- Measure physics signals (bremsstrahlung and annihilation) from data
- Minimize beam background along the beam line
- Collect 4×10^{13} PoT from primary positrons