L'esperimento PADME alla BTF di Frascati

Paolo Valente INFN Roma

Outline

- * Introduction: the dark photon model(s)
- * Experimental panorama and existing constraints
 - * Electron fixed-target experiments (beam dumps)
 - * Proton beam dump experiments
 - Experiments at e+e- colliders
- Planned and future experiments
 - Electron fixed target with thin targets
- * The DAFNE linac and beam-test facility
- * The PADME experiment(s)

PADME

Secluded or hidden dark matter

- Problem: connect dark matter (e.g. WIMPs) to SM particles while being compatible with direct measurements:
 - * Low elastic cross section on nuclei
 - * Low production rates at colliders
- * **Solution**: DM **not directly connected** to the *SM*, but only through mediator particles: **portals**
 - * Hidden or secluded or dark sectors often present in string theories and super-symmetry
 - * Simple model: add additional U(1)' gauge group, but a vector boson not the only possible mediator
 - * The mediator could be not the lightest dark particle and thus it is not itself a DM candidate

PADME Portals to secluded dark sector **Dark Sector Standard Model** "portal" SU(3)×SU(2)×U(1) ?????? $\frac{1}{2}\epsilon F_{\mu\nu}^Y F'^{\mu\nu}$ vector dark photon $\epsilon_h |h|^2 |\phi|^2$ Higgs dark scalar $\epsilon_{\nu}(hL)\psi$ neutrino sterile neutrino $\frac{1}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu}$ axion **ALPs**

P. Val

The simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1)
 gauge symmetry and a corresponding gauge boson: the so-called
 dark photon or U boson.
- *** Two types of interactions with SM particles** should be considered:
 - **1. QED-like interactions**, with coupling g' and charges q_f :
 - * $\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$
 - Not all the SM particles need to be charged under this new symmetry
 - In the most general case q_f is different between leptons and quarks and can even be o for quarks. (P. Fayet, Phys. Lett. B 675, 267 (2009).)

Holdom, Phys. Lett. B166, 1986

 e^+

The simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the so-called dark photon or U boson.
- *** Two types of interactions with SM particles** should be considered:
 - 2. Effective coupling generated through the kinetic mixing between the QED photon and the new U(1) gauge boson:

*
$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$
; $F^{\mu\nu}_{dark} = \partial^{\mu} U^{\prime\nu}$

* In this case the coupling is just proportional to the electric charge and thus it's the same for quarks and leptons:

*
$$A_{\mu} \rightarrow A_{\mu} + \varepsilon a_{\mu}$$
; $\alpha' = \varepsilon^2 \alpha$

Holdom, Phys. Lett. B166, 1986

No direct coupling to SM, by far the most used model

- * Coupling expected in the range $\varepsilon \sim 10^{-2} 10^{-3}$ but can be further suppressed by an enhanced symmetry
- * Depending on the model, mass scales like:
 - * $m_U/m_W \sim \varepsilon \varepsilon^{\frac{1}{2}}$ leading to a MeV-GeV mass scale

P. Valente - November 3rd, 2014

N. Wiener

U boson decays to SM particles

Decay to "visibles"

If no lighter states exists in the dark sector with $m_{\chi} < m_{U}/2$, U decays only to SM particles

- If dark photon couples to SM particles through kinetic mixing only same coupling εq:
 - * For $m_U < 2m_\mu$ it only decays to $e^+ e^-$
 - * For $m_U < 2m_\mu$, take BR from R(e⁺e⁻ \rightarrow had./e⁺e⁻ \rightarrow $\mu^+\mu^-$)

U boson decays to DM particles

Decay to "invisibles"

If – instead – additional lighter states do exist in the dark sector with $m_{\chi} < m_{U}/2$

- * Dark photon decays to SM particles will be suppressed by ε²
- * $U \rightarrow \chi \chi \approx 1$

Particle astrophysics: PAMELA, AMS

PADME

- * Positron eccess: PAMELA, FERMI, AMS-02
- * No significant excess in antiprotons
 - * Consistent with pure secondary production
- * Leptofilic dark matter annihilation?
- * If DM is the explanation, the **mediator should be light**, < $2m_{proton}$

P. Valente - November 3rd, 2014

χ

P. Valente - November 3rd, 2014

 m_{ν}

The DAMA-Libra effect

- Nuclear recoil by the exchange of a dark photon
- * Independent of χ mass value

Observation of 3.5KeV X-ray line

- Recently a 3.55 KeV X-ray line (~3σ) has been reported in the stacks analysis of 73 galaxy clusters from the XMM-Newton telescope. arXiv:1402.2301v1
- A similar analysis finds an evidence at the 4.4σ level for a 3.52 KeV line from the analysis of the X-ray spectrum of the Andromeda galaxy (M31) and the Perseus Cluster. arXiv:1402.4119

3.5 KeV line explained through U boson

- * Many models have been developed to explain such a line, based on sterile neutrinos
- * A possible explanation of such a line in term of the U(1) gauge theory with an Higgs mechanism is proposed in **arXiv:1404.2220v1**
 - * A single new scalar dark matter field ϕ of mass 7.1 KeV is introduced
 - \$\phi\$ couples to SM Higgs through U boson
 - * Due to very small mass, ϕ can only decay into $\gamma\gamma$ (or $\nu\nu$), giving the X line at 3.5 KeV
 - * After spontaneous symmetry breaking of U(1) symmetry, U boson becomes massive
 - * Due to constraints coming from the relic abundance, a mass interval has been identified: $7\text{KeV} < m_U < 10\text{MeV}$

Parameter space for hidden photons

Parameter space for hidden photons

PADME

BTF/

P. Valente - November 3rd, 2014

U

$$\sigma_{\gamma'}^{\rm ft} \sim \frac{lpha^3 Z^2 \epsilon^2}{m_{\gamma'}^2}$$

 $\sigma_{\gamma'}^{\rm coll}~\sim~\frac{\alpha^2 \varepsilon^2}{E^2}$

$$\sigma_{\gamma'} \sim 100 \text{ pb}\left(\frac{\epsilon}{10^{-4}}\right)^2 \left(\frac{100 \text{ MeV}}{m_{\gamma'}}\right)^2$$

Electron fixed target experiments

Kinematics:

- U takes nearly all the beam energy (sharply peaked at x≈1)
 - * Electron takes a small energy $\approx m_U$
- * U emission almost collinear to the beam, narrow distribution around $\theta_{U} \approx (m_{U}/E_{o})^{3/2}$
- * Electron angle, wide distribution: $\theta_e \approx (m_U/E_o)^{1/2}$
- * U decay products open by $\theta \approx m_U / E_o$

PADME Electron fixed target experiments Main backgrounds: SM Bremsstrahlung 6 * e Bremsstrahlung **Bethe-Heitler** * 5 Bethe-Heitler E (e+) (GeV) 4 Signal 3 e 2 1 **Bethe-Heitler** 0 2 3 5 6 7 0 4 E (e-) (GeV) e e $E_U \approx E_o$ Eo Target) θ_ι ρ^+ $E_e \approx m_U$

$$E_{\gamma'} = x_0 E_0$$

$$e^- \underbrace{E_{\gamma'} = x_0 E_0}_{\substack{E_{\gamma'}, \gamma'}} \underbrace{e^-}_{e^+} \underbrace{dP(t)}_{\substack{E_{\gamma'}, \gamma'}} \underbrace{dP(t)}_{e^+} \underbrace{dP(t)}_{\substack{E_{\gamma'}, \gamma'}} \underbrace{dP(t)$$

BTF/

P. Valente - November 3rd, 2014

INFN

Limits from electron beam-dump experiments

 $N_{\text{events}} \sim \int dE_{\gamma'} \int dE_e \int dI \ \frac{d\sigma_{\gamma'}}{dE_{\gamma'}} \ e^{-L_{\text{sh}}/I_{\gamma'}} \left(1 - e^{-L_{\text{dec}}/I_{\gamma'}}\right) \ N_e \ I_e(E_0, E_e, I) \ BR_{e^+e^-} \ A_{\text{exp}}$

Experiments looking for decay products of "rare penetrating particles" behind a stopped electron beam

Kinetic mixing

 $BR(U \rightarrow e^+ e^-)=1$

Ħ

- * SLAC **E137** (1988)
 - * 30 C, 20 GeV, 179 m + 204 m
- * SLAC **E141** (1987)
 - * 0.3 mC, 9 GeV, 10 cm, 35 m
- Fermilab **E774** (1991)

0.8 nC, 275 GeV, 30 cm, 7 m

E-137 at SLAC

Scatter plot of the angular distribution of candidate events. Only the bold-faced point has energy >3 GeV; the triangular point has energy >2 GeV, but unambiguously does not point toward the dump. The three points apparently emergent from below the horison are actually cosmic rays entering the detector from the rear.

Limits from electron beam-dump experiments

- # Use data of the search of v_H →ve+e− for looking for P→γA'
- **#** Pseudoscalar decaying to spin o or ½ particles negligibly small

P. Valente - November 3rd, 2014

Limits from past experiments: proton beam dump

CHARM:
$$v_{H} \rightarrow ve^{+}e^{-}$$
 from π , K, D decays
2.4:10¹⁸ POT
Look for $\eta, \eta' \rightarrow \gamma A'$
 $N_{A' \rightarrow e^{+}e^{-}} = Br(\eta(\eta') \rightarrow \gamma A')Br(A' \rightarrow e^{+}e^{-})\int \frac{d\Phi}{dE_{A'}} \cdot exp\left(-\frac{L'M_{A'}}{P_{A'}\tau_{A'}}\right) \left[1 - exp\left(-\frac{LM_{A'}}{P_{A'}\tau_{A'}}\right)\right] \zeta A dE_{A'}$
 $\Phi(A') \propto N_{pot} \int \frac{d^{3}\sigma(p+N \rightarrow \eta(\eta') + X)}{d^{3}p_{\eta(\eta')}} e^{+e^{-}}$ reconstruction efficiency
 $\times \epsilon^{2}Br(\eta(\eta') \rightarrow \gamma \gamma)f d^{3}p_{\eta(\eta')}$

collisions at 27.4 GeV

0.2 0.3 0.4 0.5 0.6 0.7 0.8

p_T, GeV/c

15 12.5

10

7.5 5

2,5

Bourquin-Gaillard parametrization for the invariant cross section of hadron production in high energy hadronic collisions over the phase-space π⁰:η:η' yield=1: 0.078: 0.024

Phys. Rev. D85, 055027 (2012), Phys. Lett. B713, 244 (2012)

PADME

Limits from past experiments: proton beam dump

NOMAD and PS191 looked for heavy neutrino $v_H \rightarrow ve^+e^-$ Look for $\pi^0 \rightarrow \gamma A'$

NOMAD: **4.1·10¹⁹ POT** E>4 GeV, m_{ee}<95 MeV PS191: **0.89·10¹⁹ POT**

$$Br(\pi^0 \to \gamma A') = 2\epsilon^2 Br(\pi^0 \to \gamma \gamma) \left(1 - \frac{M_{A'}^2}{M_{\pi^0}^2}\right)^3$$

P. Valente - November 3rd, 2014

Limits from past experiments: proton beam dump

PADME

PADME PADME SHIP at SPS

	Charm	PS191	NOMAD	NuCal	SHIP
BeamEnery	400 GeV	19.2 GeV	450 GeV	70 GeV	400 GeV
p.o.t.	2.4 1018	8.6 1018	4.1 1019	1.7 10 ¹⁸	2.0 10 ²⁰
Distance	480m	128m	835m	64m	60m
Detector	35m	12m	7.5m	23m	160m
Radius	1.5m	1.5m (?)	1.8	1.3m	2.5m

PADME Possible future proton beam dumps: SHIP at SPS

P. Valente - November 3rd, 2014

Limits from *e*⁺*e*⁻ colliders

Dark photon decaying to lepton pair At KLOE, also $\Phi \rightarrow \eta \gamma^* \rightarrow \eta U \rightarrow \eta \gamma^* \rightarrow \eta I^+I^-$

Non-Abelian hidden sectors (many gauge bosons)

Light hidden-sector Higgs boson

Dark sector with dark Higgs

- * Model assumes the existence of an elementary dark Higgs *h*' boson, which spontaneously breaks the U(1) symmetry. **PRD 79, 115008 (2009)**
- * U boson can be produced together with a dark Higgs h' through a Higgs-strahlung $e^+e^- \rightarrow Uh'$
 - * Cross section =20 fb × $(\alpha/\alpha_{dark})(\varepsilon^2/10^{-4})(10 \text{ GeV})^2/\text{s}$
 - * For light h' and U $(m_{U,h'} < 2m_{\mu})$ final states with 3 e^+e^- pairs are predicted
 - * Background events with 6 leptons very rare at low energies
 - * *U,h*' being very narrow resonances, strong kinematical constraints on lepton pair masses
- Experimental search by BaBar and KLOE for U masses above 200 MeV

* No data available below 200 MeV in $m_{\rm U}$

* PADME can provide sensitivity in unexplored parameter region.

From beam dump to thin target

- Unexplored regions in parameter space correspond to shorter U lifetimes
- Experiments need to use a thin target and close detectors
 - * huge SM background!
- * Two possible techniques:
 - * Bump hunting
 - Displaced vertex

PADME First generation thin target experiment: APEX at JLAB

P. Valente - November 3rd, 2014

e+e- mass [MeV]
Thin target experiments: HPS at JLAB

- * High rate
- High acceptance
- * Excellent mass & vertex resolution
- * Use Jefferson Lab e⁻ beam in Hall B.
- Commissioning in 2014
- * Ready to get data in 2015

PADME

Thin target experiments

Bremsstrahlung conversion in target $\approx T^2$ $<\theta>_{MS} \approx T^{\frac{1}{2}} E_o$ $N_{\nu'} \approx T$

Running or coming soon:

- * APEX at JLAB Hall-A, test run done, full run coming
- * A1 at MAMI
- * HPS at JLAB Hall-B, test run done, full run coming

Proposed:

- DarkLight at JLAB FEL (electron on gas jet target)
- * P-348 at CERN SPS (thin-thick)
- VEPP3 (electron on gas jet target)
- * PADME

Summary of existing contraints on U

- Favored parameters values explaining g⁻²
 - * U-boson light: 10-100 MeV
- * Dark photon experiments
 - Beam dump experiments (grey)_ω
 - * Fixed target (thin)
 - * Peak search in BG
 - * Mesons decays
 - * Peaks in M(e+e-) or M(μ + μ -)
- * Indirect exclusion from g_e^{-2} , g_u^{-2}
 - * Recent tight limit in blue filled area

$\varepsilon_q \neq 0$ and $U \rightarrow e^+e^-$

P. Valente - November 3rd, 2014

ε_q =0 and U $\rightarrow e^+e^-$

Visible decays suppressed by $U \rightarrow \chi \chi$

PADME

P. Valente - November 3rd, 2014

Dark photon invisible decays

- In this scenario U boson keeps the characteristics to explain positron excess, g⁻²
- The invisible search technique remove any assumption except coupling to leptons
- U boson increase its capability of having escaped detection so far
- Practically no data in the minimal assumptions

Dark photon invisible decays

- At present there are very few experimental limits for the U invisible decays:
 - arXiv o8o8.oo17: Babar 'o8 (unpublished) with very limited sensitivity on ε² (Y₃₅→γU assumes coupling to quarks)
 - * arXiv:1309.5084v1: Indirect limit fromE787+E949 $K^+ \rightarrow \pi^+ \nu \nu$ (assumes coupling to quarks)

Dark photon invisible decays

 If we complicate the simple U boson model, these limits get even weaker, e.g. adding a dark Z

arXiv:1402.3620v2

Status: publishing, approved, proposals

DAFNE linac and beam-test facility

RF frequency	2856 MHz
Accelerating structure	SLAC-type, CG, 2π/3
RF source	4×45 MWp SLED-ed klystrons TH2128C

INFŃ

BTF beam attenuation and energy selection

42° momentum selection dipole

BTF/

Adjustment of the number of particles can be achieved:

- Without changing the momentum resolution:
 - Modulating the linac current [not possible in 'parasitic mode', very rough]
 - Act on gun parameters, transport optics or modulators power/phase
 - Choosing another target depth [step change but reproducible]
 - Closing/Opening the down-stream vertical collimators [fine but small range]
 - Closing/Opening the up-stream vertical collimators
- Also <u>changing</u> the momentum resolution:
 - Closing/Opening the horizontal collimators

BTF operating modes

- Starting from 10⁷-10¹⁰(10⁹) electrons (positrons) from the DAFNE LINAC, with E_{max} =550/750 MeV and Δ t=1.5-40 ns, it operates mainly in **two different intensity regimes**:
 - High intensity: primary beam driven to the experimental hall, between 250 MeV and E_{max}, tuned with collimators
 - Single particle/bunch (Poisson distribution) between few tens of MeV and E_{max}, created intercepting the beam with a variable depth copper target, selecting the energy and collimating.
- Intermediate intensity (<10⁵ particles/bunch) is possible
- Primary beam fixed to E=510 MeV and $\Delta t=10$ ns during operations of DAFNE collider

BTF beam

- * 10⁴ positrons of energy 550 MeV per bunch in 49 pulses/s
- * Total e^+ on target per year: 50*10⁴*3.15 10⁷ = 1.6 10¹³ (we use 10¹³)
- Beam energy spread ~1% (linac and BTF can do better)
- * RMS of beam spot 1 2 mm and emittance 1mm*mrad
- Beam position RMS 0.3 mm
- * Bunch duration 10 ns (can already go up to 40ns)

Linac pulse

0.5 nC = 50 mA average current
(can be pushed a lot...)
10⁸ electrons × about 30 micro-bunches
25 Hz typical repetition rate
50 Hz maximum

1 pulse/s sent to a spectrometer line for energy monitoring (45° dipole + metallic strip detector)

PADME setup concept

- * Search for the process: $e^+e^- \rightarrow \gamma U$
- * 550 MeV positron beam on a 50 μ m diamond target
- * Measure in the ECal the E_{γ} and θ_{γ} angle wrt to beam direction
- * Compute the $M_{miss}^2 = (P_{e^-}^4 + P_{beam}^4 P_{\gamma}^4)^2$
 - * $P_{e^-}^4 = (0,0,0,m_e)$ and $P_{beam}^4 = (0,0,550,sqrt(550^2 + m_e^2))$

Signal selection

- * Removes low energy bremsstrahlung photons and pile up clusters
- Positron veto in the spectrometer
 - E_{e+}< 500 MeV then (E_{beam} E_{e+} E_{cl}) > 50 MeV
 - * Reject BG from bremsstrahlung identifying primary positrons
- * Missing mass the region: $M_{miss^2}U \pm \sigma(M_{miss^2}U)$

Background estimates

- * Even with 10⁴ e⁺ per bunch kinematics is preserved
- Pile up contribution is important but rejected by the maximum cluster energy cut and M_{miss}².
- * Veto inefficiency at high missing mass $(E(e^+) \simeq E(e^+)_{beam})$
 - * New Veto detector introduced to reject residual BG
 - New sensitivity estimate ongoing

The yy normalization selection

$$N_{\gamma\gamma}^{tot} = \frac{N_{\gamma\gamma}}{Acc_{\gamma\gamma}} = Flux(e^+) \cdot \sigma_{\gamma\gamma}$$

- Number of calorimeter clusters = 2
- Cluster energy: 100MeV<E_{cl}<400 MeV
- Cluster radial position 5 cm <R_{Cl}< 13 cm
- * $\gamma\gamma$ invariant mass 20 MeV < $M_{\gamma\gamma}$ < 26 MeV

$$M_{\gamma\gamma} = \frac{\sqrt{[(X_{\gamma 1} - X_{\gamma 2}) + (Y_{\gamma 1} - Y_{\gamma 2})]E_{\gamma 2}E_{\gamma 2}}}{Z_{EMcal} - Z_{Target}}$$

Acceptance_{$\gamma\gamma$} = 7%

 \mathbb{H} Contamination from bremsstrahlung < 1%

PADME sensitivity estimate

- Based on 10¹¹ fully GEANT4 simulated e⁺ on target events
- * Number of background events is extrapolated to 10¹³
 - * Using N(U γ)= σ (N_{BG})
 - * δ enhancement factor $\delta(M_U) = \sigma(U)/\sigma(\gamma\gamma)$ with ε=1

$$\frac{\Gamma(e^+e^- \to U\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta^2$$

M. Raggi and V. Kozhuharov, Adv. In HEP, Vol. 2014 ID 959802

PADME invisible sensitivity

- * Search for the process: $e^+N \rightarrow Ne^+U \rightarrow Ne^+e^-e^-$
- * 550 MeV positron beam on a 50 μ m diamond target
- * Measure in the spectrometer the P⁴_e- P⁴_e+
- * Compute the $M_U^2 = (P_{e^-}^4 + P_{e^+}^4)^2$

Indication on visible decay sensitivity

- * Ratio of bremsstrahlung wrt to annihilation at 1MeV ~ 400
- * Scaling low of the U-strahlung is $1/M_{U}^{2}$
- ★ Final state is more constrained by invariant mass of the e⁺e⁻ pair
- * Naively a limit for $\varepsilon^2 < 10^{-5}$ is expected up to 100 MeV

Visible decay: dump experiment

- Same detectors as thin target measurements
 - * Change the target with 5-7.5 cm W one
 - * Build a W collimator
 - * Remove the EM calorimeter

Visible decay: dump experiment

- * Early study for a beam dump experiment (Sarah Andreas)
 - * 10⁷ electrons of energy 750 MeV per bunch in 50 bunch/s over 1 year
 - * Total e^- on target being: 50*10⁷*3.15 10⁷ = 1.6 10¹⁶ (we use 1E16)
 - * Study based on o events observed after the dump. (not easy to achieve)
 - * Much better sensitivity can be achieved using 10¹⁰ e⁻/bunch (total 10¹⁹)

PADME active target

- Diamond 50µm thick target
 - Most probably strip detector
- Active area 2x2cm²
- * Position resolution ~2mm in both X and Y
- * Sensitive from few particle to 10⁹ particle
- Real time beam imaging
- Time resolution below 1ns
- * Readout with QDC.
- R&D can start from CIVIDEC diamond mosaic detector

Diamond Strip Detector

Features:	
Active area:	13 mm x 13 mm
Energy resolution:	35 keV FWHM NEW
Particle rate:	1 MHz
Detector:	
Type:	sCVD Diamond Mosaic-Detector
Diamond substrates:	4.5 mm x 4.5 mm
Thickness:	140 µm
Electrode structure:	3x3 mosaic structure
Metallization:	Au electrodes

Target termal load and out gassing

- * The total energy deposit into the target will be
 - * $E_{tot} = E_{mip} \cdot \rho \cdot T \cdot N_e \cdot N_{Pulses} = 2MeV \cdot 2.62 \cdot 0.005 \cdot N_e \cdot 49 = 13 \text{ GeV/s}$
 - * Converting to joule gives P=20 10⁻¹⁰ W
 - * The total mass of the target will be $M_{tar} = 2 \cdot 2 \cdot 0.005 \cdot 2.62 = 0.05 \text{ g}$
 - * $\Delta T/dt = P/(M_{target} \cdot c) = 5.6 \times 10^{-8} \circ C/s$
- Outgassing of the target is very low
- In the dump case the total power will be in the range 40 to 900 W (allowed intensity 3 • 10¹⁰ e/s to maximum achievable linac current)
 - * Study needed here...

PADME spectrometer & Magnet

First studies:

- * Conventional dipole magnet with B=0.6 Tesla
- * Generic cylindrical tracking chamber filled with gas
 - * Inner radius 20 cm outer radius 25 cm length 100 cm
 - * 5 cylindrical layers of 1cm each
- * Expected to measure track crossing position with 300 μ m resolution
- Used in the experiment to veto positron and to reconstruct mass of lepton pairs

Quite **large gap** dipole needed >25 cm, long magnetic field (1 m)

Available at CERN

Aperture width Aperture height	520.0 mm 110.0 – 200.0 mm
Iron Length	1000.0 mm
Total Length	1700.0 mm
Total Width	1160.0 mm
Total Height	1740.0 mm
Weight	15000 Kg
Peak I (cycled)	675.0 A
RMS current	675.0 A
Resistance 20°C	195.0 mΩ
Inductance	663.0 mH
Total n of turns/pol	e 180
Power	93.0 KW
Delta P nominal	5.0 bar
Nominal flow	65.0 l/min
Dipole peak field	1.64 T – 0.8 T

INFN

New version of magnet + spectrometer

PADME

The electromagnetic calorimeter

Parameter Units:	$: \rho g/cm^3$	MP °C	X_0^* cm	R^{\star}_{M} cm	dE^*/dx MeV/cm	λ_I^* cm	$rac{ au_{ m decay}}{ m ns}$	λ_{\max} nm	n^{\natural}	$\begin{array}{c} \text{Relative} \\ \text{output}^{\dagger} \end{array}$	Hygro- scopic?	d(LY)/d7 %/°C [‡]	
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2	
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9	
BaF2	4.89	1280	2.03	3.10	6.5	30.7	650 ^s	300 ^s	1.50	36 ^s	no	-1.9^{s}	
							0.9^{f}	220^{f}		4.1^f		0.1^{f}	
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4	
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	420^{s}	1.95	3.6^{s}	slight	-1.4	
							6^{f}	310^{f}		1.1^{f}			
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	30 ^s	425 ^s	<mark>2.2</mark> 0	0.3	no	- <mark>2.5</mark>	
	1010202000			0.000	< 1058021331		105	420	- 10. M.S. U.V.	0.077	1962.27	1000000	
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2	
LaBr ₃ (Ce)	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2	

- * Cylindrical shape: radius 15 cm, depth of 15-20 cm
 - * Inner hole 4 cm radius
 - Active volume 9840 cm³ total of 656 crystals 1x1x15-20 cm³
- * Material LSO(Ce): high LY, high ρ , small X_o and R_M, short τ_{decay}
- Expected performance:
 - * $\sigma(E)/E = 1.1\%/VE \oplus 0.4\%/E \oplus 1.2\%$ superB calorimeter test at BTF [NIM A 718 (2013) 107–109]
 - * $\sigma(\theta) = 3 \text{ mm/1.75 m} < 2 \text{ mrad}$
 - * Angular acceptance 1.5-5 degrees

Calorimeter: a low-cost alternative?

THE L3 BGO ELECTROMAGNETIC CALORIMETER AT LEP

Fernando FERRONI

CERN and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy

L3 experiment is operating since August 1989 at LEP in CERN. It contains a unique electromagnetic calorimeter consisting of bismuth germanate (BGO) crystals. The performances of the BGO calorimeter are discussed in this paper.

1. INTRODUCTION

L3 experiment¹ is one of the large detectors designed for the LEP electron-positron colliders. It is a detector that concentrates its efforts on measuring electron, photons and muons with high precision. The electromagnetic calorimeter makes use of a new type of crystals which allow the measurement of the energies of electrons and photons with an accuracy of 5% at 100 MeV and better than 1% at high energy. Muon momenta are measured by a set of large drift chambers with a precision of 2% at 50 GeV. Hadron jets are measured in a hadron calorimeter, made of depleted uranium plates with proportional wire readout, with a resolution of $(55/\sqrt{E}+5)$ %. A central detector based on the principle of time expansion is used to track charged particles. All the detectors are installed within a 7800t magnet providing a 0.5T field. The L3 detector is now running since one year.

The performances of the BGO electromagnetic calorimeter are discussed in this paper. We first discuss the electromagnetic calorimeter design, we then review its performance as measured in a test beam and finally we give some result on its behaviour obtained at LEP. sic elements are $B_4Ge_3O_{12}$ (bismuth germanate)³ scintillating crystals. This high density, high Z material was chosen mainly for its very short radiation length $X_0 = 1.12$ cm. Some properties of BGO are listed in table 1.

Table 1: BGG) properties	
Density	(g/cm ³)	7.13
Hardness	(Mho)	5
Melting point	(°C)	1050
Radiation length	(cm)	1.13
Absorbtion length	(cm)	22
Critical energy	(MeV)	8.8
Moliere radius	(cm)	2.7
(dE/dx)	(MeV/cm)	9.2
$<\lambda_{scint}>$	(nm)	480
Decay constant at	20 ⁰ C (ns)	300
Photons/MeV		104
Temperature grad	ent (%/°C)	-1.55
Index of refraction		2.19

BTF/

- 24 cm length = 22 x_0
- Different shapes
- Excellent energy resolution

BGO from L3 calorimeter: time resolution

From M. Marafini

About 100 crystals available in Rome

Possible to cut precisely crystals

AZIENDA

TECNOLOGIA E LAVORAZIONI SPECIALI

PRODOTTI COATING

PROGETTI SPECIALI

PECIALI

ENGLISH

GESTIONESIL@

NEWS & EVENTI

SERVIZI

05/05/2014 > FLAIR 2014 - Field Laser Applications in Industry and Research Gestione SILO parteciperà alla conferenza internaziole FLAIR, che si terrà dal 05.05.2014 al 09.05.2014 presso l'Hotel Demidoff, Pratolino (Fi), Italia... HOME DOVE SIAMO CONTATTACI LAVORA CON NOI SITEMAP

PRISMI

Gestione Silo è il partner ideale per prismeria completamente custom: prismi retti, penta prismi, prismi di Dove, di Porro, Beasplitter Cube, Pechan e molti altri, per ogni forma e dimensione richiesta.

LEGGI >

01 MATERIALI E LAVORAZIONE

Realizzazione di lenti e prismi con vetro ottico fornito dai produttori di riferimento quali Schott, Ohara, Hoya, CDGM, ecc.

Lavorazioni ottiche su materiali per IR di alta qualità (ZnSe,ZnS, Germanio, Silicio, Caf2 ecc.) e lucidatura componenti metallici con finiture per alto vuoto e per ottica di precisione.

02 COATING

Trattamenti AR larga banda e Laser line su VIS, IR e UV.

Trattamenti alta riflettività per specchi metallici e dielettrici.

Trattamenti beam-splitter, Dicroici e ITO applicabili su tutti i componenti ottici di nostra produzione o fornitura del cliente.

03 ASSEMBLAGGI E PROTOTIPI

Assemblaggio di assiemi opto-meccanici di serie, all'interno di reparti dedicati e attrezzati per garantire gli standard di pulizia richiesti. Sviluppo di prototipi: dalla progettazione all'ingegnerizzazione e successiva costruzione per una verifica immediata dell'idea optomeccanica del cliente.

Possible BTF upgrades

- Beam-line splitting
- * Energy upgrades
 - Up to 1.1 1.2 GeV electrons
 - * 800 850 MeV energy for positrons (see V. Buonomo BTF user workshop)
- Longer pulses
 - Standard BTF duty cycle = 50*10 ns = 5x10⁻⁷ s
 - * Already obtained upgrade 50*40ns= 20x10⁻⁷ s
 - * Aim at 100 200 ns range
- * Increase of **beam charge**
- * Collimation system
 - * Assure better beam definition for positrons beam
- * Maximum current in BTF hall
 - * Limited by radio protection to 6.2x10⁸ per bunch for long term operation
 - * Can reach >3x10¹⁰ particle per second after proper screening

See recent BTF user workshop for details at: https://agenda.infn.it/conferenceOtherViews.py?view=standard&confId=7359

Coming next week:

"What Next LNF", 10/11 November 2014

BTF beam-line doubling: main elements

A new, dedicated, high-intensity line, independent from medium-low intensity line for particle detectors testing

- * Move the control room upstairs
- Shield the present control room to be used as second experimental hall
- * Move DAFNE control racks upstairs ("vetrina")
- * In order to re-use the linac spectrometer dipole:
 - * Measure beam energy in the the BTF line

PADME

LINAC energy upgrade/1

- I5 m in the final part of the LINAC
- Add 4 more accelerating sections (3 m) fed by 2 modulators + 2 SLED-ed klystrons to reach the 1 GeV range (for electrons)

LINAC energy upgrade/2

Linac bunch charge vs. length

PADME

×4 increasing pulse length

×3 - ×5 Increasing gun pulse height

Extending the pulse length

SLAC-PUB-7214 June 1996

Reducing Energy Spread for Long Bunch Train at SLAC*

F.-J. Decker, D. Farkas, L. Rinolfi¹, J. Truher Stanford Linear Accelerator Center, Stanford CA 94309, USA

Extending more the pulse length

SLAC-PUB-7214 June 1996

Reducing Energy Spread for Long Bunch Train at SLAC^{*}

F.-J. Decker, D. Farkas, L. Rinolfi¹, J. Truher Stanford Linear Accelerator Center, Stanford CA 94309, USA

Add two more 180° phase inversions

Improvements on PADME from BTF upgrades

P. Valente - November 3rd, 2014

Possible parameters for electron dump experiments

- * E = 725 MeV
- ***** Q = 25 nC
- N_e = 0.784·10¹³ e/s
 (Design intensity on positron converter: 1.44·10¹³ e/s)
- * P = 0.9 kW
- ***** 1.6·10¹¹ e/bunch × 49 Hz × **3·10**⁷ **s** = 2.4·10²⁰ eot
- * Further increase (×2 at least) by enlarging the pulse time width up to >100 ns

The limitation will come from radio-protection issues

BTF radio-protection issues

- * Present authorization: average 3.125 10¹⁰ electrons/s at 800 MeV
 - * 5 nC/s = 10 mA × 10 ns × 50 Hz
 - * Translates to <10¹⁸ electrons/year
- Calculated for 1 m of concrete + 15 cm of lead around scattering target
- * Dump experiments aim to two order of magnitudes more charge (available from the linac)

Use existing ADONE linac dump

- A number of issues to be tackled, e.g. how to extract the full beam: thin vacuum chamber inside pulsed magnet delicate and difficult to modify (design a chicane?)
- Real layout of ADONE dump
- Activation/radio-protection in the pump hall to be re-used for experimental setup

เทรท์

DR pumps hall

BTF/

New ideas for dump experiment: BDX at JLAB

Backgrounds:

- Neutrino production
- Cosmogenic muons and neutrons
- LOI presented to PAC

Scintillator 1 m³ 1 MeV/10 MeV e⁺e⁻ detection threshold Or crystal calorimeter

PADME

INFN

BDX experiment (Hall-A)

10²² EOT = 1 beam-year at Hall-A 3 beam-years at Hall-C? arXiv:1307.6554

BDX at Frascati?

χ production and detection

- 1.5 GeV electron beam
- 7 10¹⁹ EOT/year

0.14

0.12

0.1

0.08

0.06

- 1 year run (50% efficiency)
- Repetition rate: 50 Hz, (0.7A in 10 ns bunch)
- · Negligible cosmogenic BG with timing cut
- Expected ~20 counts in 1m³ plastic scintillator detector (1 MeVee threshold)

2.442

h4 Entries 1000000 2.842

Mean

RMS

• Significant sensitivity to low mass (A'/ χ) region

Very preliminary study. Results look very promising and should be investigated further.

P. Valente - November 3rd, 2014

60

50

40

30-

Parameters:

M A' = 50 MeV M_Chi = 10 MeV Alpha_dark = 0.1 Epsilon = 10^-3

BDX @ LNF and PADME dump background

Geant 4 simulation of BTF neutron target (W, 35 mm radius, 60 mm depth)

In BDX @ LNF use the 40 ns pulse length, 50 Hz repetition: duty cycle= 2 10⁻⁶

So the total beam unrelated background goes to 3.4 10⁻⁸ Hz which leads to a total ~1 event/year

At LNF we can get a beam related background dominated experiment.

At 10²⁰ EOT we will have a zero background experiment! Potential gain of factor 1000 in the sensitivity

	Rate $_{Thr=1MeV}$ (Hz/ μ A))	Rate $_{Thr=10MeV}$ (Hz/ μ A))
χ detection - S.I	$1.0 \ 10^{-5}$	$1.2 \ 10^{-6}$
χ detection - S.II	2.0 10 ⁻⁷	0.7 10 ⁻⁷
B-rel ν	2.0 10 ⁻⁹	2.0 10 ⁻¹⁰
B-rel neutron	0	0
	Rate $_{Thr=1MeV}$ (Hz)	Rate $_{Thr=10MeV}$ (Hz)
B-unrel ν	$2.0 \ 10^{-6}$	$2.0 \ 10^{-7}$
B-unrel neutron	$2.7 \ 10^{-3}$	0.6 10 ⁻³
Crossing muons	$3.3 \ 10^{-3}$	$3.5 \ 10^{-3}$
Captured μ^+	1.4 10-3	2.4 10-3
Decaying μ^- (CORM)	$2.9 \ 10^{-3}$	$4.8 \ 10^{-3}$
Stopped μ in lead	7.0 10 ⁻³	$4.3 \ 10^{-3}$
μ^- rare decay	$2.0 \ 10^{-5}$	8.0 10-6
Total Beam-unrelated bg	$1.7 \ 10^{-2}$	$1.5 \ 10^{-2}$

BDX background with 10²² EOT

	$\operatorname{Counts}_{Thr=1\mathrm{MeV}}$	$\operatorname{Counts}_{Thr=10 \mathrm{MeV}}$
χ detection - S.I	$0.5 \ 10^6 \pm 700$	$5.7 \ 10^4 \pm \ 240$
χ detection - S.II	$1.0\ 10^4 \pm 100$	$3.3 \ 10^3 \pm 60$
Beam-rel bg	100 ± 10	10 ± 3
Beam-unrel bg	$1.6 \ 10^6 \pm 1300$	$1.4 \ 10^6 \pm \ 1200$

PADME

N

PADME experiment(s)

	(1)	PADME invisible
Thin target	Low intensity	 * Use a positron beam and annihilation diagram on target electrons: e⁺e⁻ → γ U * Detect U decays in any channel by looking at the missing mass: * Measure the momentum of incoming e⁺: use a thin target * Measure the momentum of the emitted γ: calorimetry
	High intensity { 2.	 PADME visible * Use a electron/positron beam and the Bremsstrahlung diagram on target nuclei: e N → e N U * Look for U boson decays to e⁺ e⁻ pairs * Look for bump in e⁺ e⁻ invariant mass distribution * Look for a e⁺ e⁻ vertex displaced from the target
Thic Max	k target kimum intensity	 PADME dump * Use the full electron beam of the linac, maximum energy and maximum intensity, and completely dump it on a thick target * Look for e⁺ e⁻ pairs behind dump + shield, from U Bremsstrahlung production in the target and subsequent decay
BTF/	4.	 BDX @ BTF * Like PADME dump, but look for U → χχ decays and subsequent χ interaction with nuclei in a recoil detector P. Valente - November 3rd, 2014

Plans/1

PADME invisible

- Test of diamond target
- Test of LYSO calorimeter prototype matrix
- Tests of BGO crystals
- Finalize details on vacuum pipe, target, dump, positron veto, etc.
- Write a technical proposal for the invisible

PADME dump

- Perform study in more realistic intensity scenarios from 10¹⁸ to 10²⁰
 eot and beyond
- Further investigation on ADONE dump
- Simulate a realistic setup
- Study radio-protection issues

Plans/2

- PADME visible
 - Refine study with realistic spectrometer
 - Test of possible trackers
- BDX @ BTF
 - Perform study up to 10²⁰ eot and beyond
- BTF upgrades
 - Study improved shielding
 - Refine studies for beam-line splitting
 - Plan modifications to the gun pulser
 - Improve design and planning for the energy upgrade

P. Valente - November 3rd, 2014

"hot cell"

The Dark Side is Calling You

* Missing mass resolution in agreement with toy MC using

- * $\sigma(E)/E = 1.1\%/VE \oplus 0.4\%/E \oplus 1.2\%$ [NIM A 718 (2013) 107–109]
- Differences are ~ 10%
- Resolution is the result of combination of angular resolution energy resolution and angle energy correlation due to production

107

													PADME				
PADME		2015			2016			~	2017			2018			04	2019	
A1 1 Monte Carlo optimization	QI	Q2	Q3	Q4	QI	Q2	Q3	Q4	QI	Q2	Q3	Q4	QI	Q2	Q3	Q4	Q1 Q2 Q3 Q4
A1 2 Computing		<u></u>		-													Software
A1.3 Physics sensitivity and analysis		-	e e			8	1				1	1 - T			1	-	
A2 1 Target optimization								5 (ř					199			5 - 3	
A2.2 Single diamond laver		2	8 X														
A2.3 Prototype assembly											Target construction						
A2.4 Calibration						1				Star	ts: 1.	1.20	15. E	nds:	1.7.	2016	
A2.5 Final detector assembly																	
A3.1 Calorimeter mechanical design		a .															
A3.2 Single crystal preparation																	
A3.3 Quality test			i i							Ca	lori	nete	erco	onsti	ruct	ion	
A3.4 Assembly							Starts: 1.1.2015, Ends: 1.7.2016										
A3.5 On beam commissioning																	
A4.1 Tracker materials delivery																	
A4.2 Mechanical design						1											
A4.3 Assembly							1]	Frac	ker	cons	struc	ction	n	
A4.4 High voltage system						ļ.	Starts: 1.1.2015, Ends: 1.7.2016								i		
A4.5 Commissioning																	
A5.1 Calorimeter data acquisition						-											
A5.2 Spectrometer data acquisition		1	i i			ĵ.	ŀ										
A5.3 Target data acquisition								D)ata	acq	uisi	tion	syst	em	dev	elop	ment
A5.4 Data merging						t) H	Starts: 1.7.2015, Ends: 1.7.2016										
A5.5 Data processings				Í													
A6.1 Shifts during data taking		2	94														
A6.2 Data quality monitoring		Da	to t	aki	na								Ĩ				
A6.3 Meta data collection		172	11a L	11	2019				į,				ļ.				
A6.4 Calibration		1.7.2	010 -		2010												
A6.5 Setup optimization									ļ.								10 00 00 -
A7.1 Offline data certification		Da	ta a	naly	vsis			l I									
A7.2 Results extraction		1.7.2016 - 31.12.2019										-		į —			
PADME

Cost Category			Total in Euro	
Direct Costs		PI (5y)	225000	
	Personnel	Senior Staff	91000	
		Postdocs	277000	
		Students		
		Other		
	i. Total Direct costs for Personnel (in Euro)		593000	
	Travel		80000	
	Equipment	885000		
	Other goods and services	Consumables	30000	
		Publications (including Open Access fees), etc.	0	
		Other (Audit)	10000	
	ii. Total Other Direct Costs (in Euro)		1005000	
A – Tota	al Direct Costs (i	+ ii) (in Euro)	1598000	
B – Indi	irect Costs (over	heads) 25% of Direct Costs (in Euro)	399500	
C1 – Su	bcontracting Co	osts (no overheads) (in Euro)		
C2 - Ot	her Direct Costs	with no overheads (in Euro)		
Total Es	stimated Eligible	1997500		
Total Requested EU Contribution (in Euro)			1997500	

MAMI A1

JLAB Hall-A APEX n×1.1 GeV, continuous, 200 μA beam

MAMI A1

855 MeV, continuous, 90 μA beam

PADME

Settings	A	в	\mathbf{C}	D
Beam energy (GeV)	2.302	4.482	1.1	3.3
Central angle	5.0°	5.5°	5.0°	5.0°
Effective angles	(4.5, 5.5)	(5.25, 6.0)	(4.5, 5.5)	(4.5, 5.5)
Target T/X_0 (ratio ^{<i>a</i>})	4.25% (1:1)	10% (1:1)	0.58% (1:3)	10% (1:1)
Beam current (μA)	80	80	80	80
Central momentum (GeV)	1.145	2.230	0.545	1.634
Singles (negative polarity)				
e^- (MHz)	4.5	0.7	6.	2.9
π^- (kHz)	640.	2200	36.	2500.
Singles (positive polarity)				
$\pi^++p~(m kHz)$	640.	2200	36.	2500.
e^+ (kHz)	31.	3.6	24.	23.
Trigger/DAQ:				
$\operatorname{Trigger}^{b}(\mathrm{kHz})$	4.	0.4	3.2	3.4
Signal to background:				
Trident (Hz)	610	70	350	530
Two-step (Hz)	35	15 5		75
Background ^c (Hz)	70	1.3	70	35

P. Valente - November 3rd, 2014

HPS

PADME

HPS beam

Parameter	Requirement/Expectation	Unit
Е	2200 and 6600	MeV
бр/р	< 10-4	
Current	>100 and <1000	nA
Current Instability	< 5	%
σx	< 30	μm
σ _y	< 30	μm
Position Stability	< 30	μm
Divergence	< 100	µrad
Beam Halo (>50)	< 10 ⁻⁵	

DarkLight

FEL electron beam, 100 MeV, continuous, 10 mA, sent onto $10^{19} H_2/cm^2$ gas jet target

- Proton recoil detector. Full reconstruction of the event for background rejection.
- Vertexing and low momentum lepton tracker: TPC
- Outer trackers

INFN

Dark photon at JLAB + MAinz

115

P-348 at CERN SPS

H4 high purity electron beam, <1% contamination required (tertiary, from γ conversions)

Energy, GeV

P-348 at CERN SPS

- $N_e = 10^{12}$ requested (3 months run)
- Main backgrounds: •
 - punch-through of primary energy into ECAL1
 - Beam-related background (mis-٠ identified electrons): muon and hadronic events

P-348 at CERN SPS

• Also proposal for A' \rightarrow invisible search

 $S_{A'} = \mathrm{ECAL1} \times \overline{\mathrm{V1} \times \mathrm{S1} \times \mathrm{S2} \times \mathrm{ECAL2} \times \mathrm{V2} \times \mathrm{HCAL}}$

- Main backgrounds:
 - punch-through of e^- or γ
 - Non-hermeticity of HCAL
 - Low energy tail of e⁻ beam
 - e⁻ induced photo-nuclear reactions
 - Muon events

Background assessment run requested for 2015, 10¹¹ electrons

PADME

PADME missing mass resolution

Resolution on missing mass squared

Figure 5: Dependence of the missing mass squared resolution on the vertex position resolution. The mass of the U-boson is assumed to be 15 MeV.

Figure 6: Missing mass resolution as a function of the U-boson mass for four different energies of the impinging positron beam

Dark/Hidden Photon and Kinetic Mixing

- gauge boson of extra U(1) symmetry
- low energy effective Lagrangian

 $\mathcal{L}_{\mathrm{eff}} \supset -rac{1}{4} ilde{\mathcal{F}}_{\mu
u} ilde{\mathcal{F}}^{\mu
u} -rac{1}{4} ilde{X}_{\mu
u} ilde{X}^{\mu
u} +rac{\chi}{2} ilde{X}_{\mu
u} ilde{\mathcal{F}}^{\mu
u} +rac{1}{2} ilde{m}^2_{\gamma'} ilde{X}_{\mu} ilde{X}^{\mu} +ej^{\mu}_{\mathrm{em}} ilde{A}_{\mu}$

- dominant interaction: kinetic mixing of hidden & visible U(1)e.g. from integrating out heavy particles charged under both U(1)s [Okun '82; Holdom '86; Galison, Manohar '84] estimate for kinetic mixing parameter χ : $\chi \sim 10^{-3} - 10^{-4}$
- e.g. broken by Higgs mechanism γ' can be light with $m_{\gamma'} \sim {
 m MeV} {
 m GeV}$
- diagonalize kinetic terms:

$$\mathcal{L}_{
m eff} \supset -rac{1}{4}F_{\mu
u}F^{\mu
u} -rac{1}{4}X_{\mu
u}X^{\mu
u} +rac{1}{2}m_{\gamma'}^2X_{\mu}X^{\mu} +ej_{
m em}^{\mu}A_{\mu} +e\chi j_{
m em}^{\mu}X_{\mu} +\mathcal{O}(\chi^2)$$

 $\Rightarrow \gamma'$ couples to SM particles with strength $\chi \times$ electric charge

Sarah Andreas (IAP), 17.07.2014

HS

 $U(1)_h$

SM

 e^+

$$\frac{d\sigma}{dx_e} = 4 \,\alpha^3 \epsilon^2 \,\chi \,\sqrt{1 - \frac{m_x^2}{E_e^2}} \,\, \frac{1 - x_e + \frac{1}{3} x_e^2}{m_x^2 \frac{1 - x_e}{x_e} + m_e^2 x_e} \,. \label{eq:ds}$$

Experiment	Target	E_0	N_e	L_{sh}	L_{dec}	E_{thr}	r_{Acc}	$N_{95\%}$
E137	Al	20	1.87×10^{20}	179	204	2	1.5	3
E141	W	9	2×10^{15}	0.12	35	4.5	0.0375	3419
E774	W	275	5.2×10^9	0.3	2	27.5	0.1	18
KEK	\mathbf{W}	2.5	$1.69 imes 10^{17}$	2.4	2.2	0.1	0.047	3
Orsay	W	1.6	2×10^{16}	1	2	0.75	0.15	3
JLab	Al	12	10^{20}	10			1	

