PADME project at DA Φ NE BTF

Mauro Raggi

Seminario INFN Sezione di Torino

Torino, 13 Aprile 2015

PADME website http://www.lnf.infn.it/acceleratori/padme/index.html

Outline

- The dark sector basic model
- Motivation for dark photon searches
- Recent results on the Dark Photon searches
- Positron Annihilation into Dark Matter Experiment PADME proposal
 - Beam conditions and the Target
 - The electromagnetic calorimeter
 - The dipole magnet
 - The spectrometer
 - The Vacuum chamber
- Analysis technique for annihilation production
 - Signal selection criteria
 - Positron flux measurement
 - Limit evaluation
- Experimental technique for bremsstrahlung production
 - Decay in e+e- pair in thin target experiment
 - The dump experiments
- Conclusion and prospects

M. Raggi

SM and the dark matter

Galaxy rotation curve

Gravitational lensing

M. Raggi Torino 13/04/15

The simplest dark sector model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or U boson.
 Two type of interactions with SM particles should be considered
- As in QED, this will generate new interactions of the type:

$$\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$$

M. Raggi

- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. (P. Fayet, Phys. Lett. B 675, 267 (2009).)
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

In this case q_f is just proportional to electric charge and it is equal for both quarks and leptons.

A' production and decays

- U boson can be produced in e⁺ collision on target by:
 - Bremsstrahlung: $e^+N \rightarrow e^+NA'$
 - Annihilation : $e^+e^- \rightarrow \gamma A'$

Bremsstrahlung

Annihilation

- If no dark matter candidate lighter than the A' boson exist:
 - $A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ the so called "Visible" decays
 - For $M_{A'}$ <210 MeV A' only decay to e⁺e⁻ BR(e+e-)=1
- If any dark matter χ with $2M_{\chi} < M_{A'}$ exist
 - A' will dominantly decay into pure dark matter and BR(I+I-) becomes small suppressed by ϵ^2 or
 - $A' \rightarrow \chi \chi \sim 1$ so called "Invisible" decays"

M. Raggi

Positron excess in cosmic rays

- Positron excess: PAMELA, FERMI, AMS02
- No significant excess in antiprotons
 - Consistent with pure secondary production
- Leptofilic low mass dark matter annihilation?

Hints for dark matter annihilation?

- If Dark Matter is the explanation to the positron excess, then the mediator should be light (< 2*M_{proton})
- Coupling constant to DM could be arbitrary (even 0(1))
- The Lagrangian term can arise through
 - Fermions being charged (mili) under this new gauge symmetry ($q_f \rightarrow 0$ for some flavors)
 - Kinetic mixing between ordinary photon and DM one
 - Using simply an effective descriptio $\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$

Muon g-2 SM discrepancy

About 3σ discrepancy between theory and experiment (3.6 σ , if taking into account only e⁺e⁻ \rightarrow hadrons)

Contribution to g-2 from dark photon

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

The DAMA-Libra effect

Dark photon searches in the world

Status: publishing, approved, proposals

Dark photon with thin targets

Dark photon in dump experiments

E137 at SLAC (1980-1982)

Experiment reinterpreted by S. Andeas

M. Raggi Torino 13/04/15

Dark photons in meson decays

NA48/2 dark photon limit

 \blacksquare Select $\pi^{\pm}\pi^{0}{}_{D}$ and $\pi^{0}{}_{D}\mu^{\pm}\nu$ decay

- Compare data and montecarlo
- Search for unexpected peak in the M_{ee}

 \blacksquare No excess observed \rightarrow set a limit in ϵ^2

Dark photon searches status

- Favored parameters values explaining g-2 (green band)
 - A'-boson light 10-100 MeV
- Status of dark photon searches
 - Beam dump experiments (grey)
 - e⁺e⁻ appearance after a dump
 - Fixed target
 - Peak search over QED BG
 - Mesons decays
 - Peaks in $M(e^+e^-)$ or $M(\mu^+\mu^-)$
- Indirect exclusion from g_e-2 g_μ-2
 Recent tight limit in red filled area

- Many different techniques, assumptions on dark photon interaction models
 - Kinetic mixing, decay to electrons, no dark sector particles

Status $\varepsilon_a \neq 0$ and A' $\rightarrow e^+e^-$

g-2 muon band excluded by recent NA48/2 measurement

Status ε_a =0 and A' \rightarrow e⁺e⁻

Meson decays not included the $(g-2)\mu$ band is not covered any more

Status $\varepsilon_q = 0$ and $A' \rightarrow \chi \chi$ decays

Removing the assumption $BR(A' \rightarrow e^+e^-=1)$ and introducing light dark matter

Why dark photon invisible decays?

- The invisible search technique remove any assumption except coupling to leptons
- A' increase its capability of having escaped detection so far
- No data in the minimal assumptions

"If, instead, the A' decays primarily into invisible light particles (e.g. a pair of dark matter particles with mass < m _,/2), that change would essentially negate all the bounds except those coming from anomalous magnetic moments" W. J. Marciano et al. arXiv:1402.3620v2

• At present there are no MI experimental limit for the A' \rightarrow invisible decay

- Just a never published ArXiv 0808.0017 by Babar '08 with very limited sensitivity on ϵ^2 (Y_{3S}→yU assumes coupling to quarks!)
- Indirect limit from $K^+ \rightarrow \pi^+ vv$ (assumes coupling to quarks!) arXiv:1309.5084v1

Invisible dark photon and kaons

In models assuming that the dark photon couples to SM through kinetic mixing $\epsilon_q \neq 0$ K[±] $\rightarrow \pi^{\pm}vv$ can be used to constrain K[±] $\rightarrow \pi^{\pm}A'$

$$\begin{split} \Gamma(K^{\pm} \to \pi^{\pm} Z_{d})|_{\varepsilon} &= \frac{\varepsilon^{2} \alpha W^{2} m_{Z_{d}}^{2}}{2^{10} \pi^{4}} \frac{m_{Z_{d}}^{2}}{m_{K}^{7}} \sqrt{\lambda(m_{K}^{2}, m_{\pi}^{2}, m_{Z_{d}}^{2})} \\ &\times [(m_{K}^{2} - m_{\pi}^{2})^{2} - m_{Z_{d}}^{2} (2m_{K}^{2} + 2m_{\pi}^{2} - m_{Z_{d}}^{2})], \\ Z_{d} &= \mathsf{A'} \text{ for Marciano!} \end{split}$$

Depending on how the model is build the limit can change significantly for example allowing the presence of dark Z.

PhysRevD.89.095006

The PADME approach

- At present all experimental results rely on at least one of the following model dependent assumptions:
 - A' decays to e^+e^- (visible decay assumption BR(A' $\rightarrow e^+e^-=1$)
 - A' couples with the same strength to all fermions ($\varepsilon_q = \varepsilon_l$) (kinetic mixing)
- In the most general scenario (PADME)
 - A' can decay to dark sector particles lighter than the A' $BR(A' \rightarrow e^+e^- <<1)$
 - Dump and meson decay experiment only limit $\epsilon^2 BR(A' \rightarrow e^+e^- <<1)$
 - A' can couple to quark with a coupling constant smaller ϵ_l or even 0
 - Suppressed or no production at hadronic machines and in mesons decays

■ PADME aims to detect A' produced in e^+e^- annihilation and decaying into invisible by searching for missing mass in $e^+e^- \rightarrow \gamma A' A' \rightarrow \chi \chi$

- No assumption on the A' decays products and coupling to quarks
- Only minimal assumption: A' bosons couples to leptons
- PAMDE will limits the coupling of any new light particle produced in e⁺e⁻ collision (scalars (H_d), vectors (A' and Z_d))

DA Φ NE Beam Test Facility (BTF)

	electrons	positrons		
Maximum energy [MeV]	750 (1050) MeV	550 (800) MeV		
Linac energy spread	0.5%	1%		
Typical Charge [nC]	2 nC	0.85 nC		
Bunch length [ns]	1.5 - 4	1.5 - 40		
Linac Repetition rate	1-50 Hz	1-50 Hz		
Typical emittance [mm mrad]	1	~10		
Beam spot σ [mm]	1 mr	n		
Beam divergence	1-1.5 mrad			

Longer Duty Cycle

- Standard BTF duty cycle = $50*10 \text{ ns} = 5\times10^{-7} \text{ s}$
- Already obtained upgrade 50*40ns= 20x10⁻⁷ s work in progress to exceed 100 ns
- Energy upgrade possible in 2017.
- The accessible $M_{A'}$ region is limited by beam energy
 - Region from 0-22 MeV can be explored with 550 MeV e⁺ beam

BTF beam summary

- Energy spread Δp/p ~1%
- Beam spot: 1 2 mm RMS
- Divergence: 1 1.5 mrad
 - Effect of multiple scattering and Bremsstrahlung on the Beryllium exit window and in air has to be considered
 - Both size and divergence depend on the optics
- Beam position: 0.25 mm RMS
- Pulse duration: 1.5 40 ns
 - 10 ns during collider operations

High intensity

Much higher charge on positron converter
8 A (12 A) from gun cathode

A few measurements on the maximum LINAC charge, driven by beam-dump experiments requirements

1.75-

1.5-

1.25

0.75-

0.5-

WCMTM001

0

6.738E-1 🕩 🎫 🖝

How many electrons on target?

- Let's compute how many eot/y^{*} for 10 nC/pulse so we can scale easily with the charge available from the LINAC
 - **10 nC** = $10^{-8}/1.6 \times 10^{-19} = 6.25 \times 10^{10}$

• At 49 Hz (1 pulse to spectrometer line) = 3×10^{12} e/s

- 2 orders of magnitude more than present BTF authorization
- Standard year = $1 y^* = 120 \text{ days at } 100\% \text{ efficiency } (10^7 \text{ s})$
- 3.175×10¹⁹ eot/y^{*}

25 nC translates in 0.8×10²⁰ eot/y*

- Considering <u>measurements</u> at 725 MeV, 40 ns, in the **present LINAC** configuration and quite conservative assumptions
- Further extension of the pulse to 150 ns seems feasible with the present RF configuration, and should bring us to \approx 100 nC, i.e. **3×10²⁰ eot/y**^{*}

Where can we dump 3×10^{12} to 3×10^{13} e/s?

The **PADME** experiment

- 10³-10⁴ e^+ on target per bunch at 50 bunch/s (10¹³-10¹⁴ e^+ /year)
- Basic detector components:
 - Active 50µm diamond target
 - GEM based magnetic spectrometer ~1m length
 - Conventional 0.6T magnet
 - 15 cm radius cylindrical crystal calorimeter with 1x1x20 cm³ crystals

The PADME experiment

The PADME diamond target

- First BTF test-beam with polycrystalline diamonds:
 - 1. Two 500 μm thick and 4 metal strips: 6.5 mm long and 1.5 mm pitch
 - 2. 300 μm thick 40 **graphitized** strips 3 mm long, 100 μm width, and 170 μm pitch
 - 50 μm thick, 2×2cm² sample for first PADME prototype
 - 50 μm thick 5×5mm² sample for BTF beam diagnostics with Silver Paint

Main result of feasibility of 50 μm sensors already established

A possible analyzing magnet for PADME

11 to 20 cm gap

Available at CERN magnet division

A possible analyzing magnet for PADME

PADME vacuum vessel study

Different possibilities under study to minimize the material thickness

Different possibilities under study to minimize the material thickness

PAMDE spectrometer

There is the possibility of having a spectrometer outside the vacuum: Impact on the PADME-visible experiment to be understood

The electromagnetic calorimeter

Parameter Units:	r: ρ g/cm ³	MP °C	X_0^* cm	R^*_M cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	$\begin{array}{c} \text{Relative} \\ \text{output}^{\dagger} \end{array}$	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	420^{s}	1.95	3.6^{s}	slight	-1.4
							6^{f}	310^{f}		1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^s	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

- Cylindrical shape: radius 150 mm, depth of 200 mm
 - Inner hole 4 cm radius
 - Active volume 13120 cm³ total of 656 crystals 10x10x200 cm³
- **I** Material LSO(Ce): high LY, high ρ , small X₀ and R_M, short τ_{decay}
- **D** Material BGO: high LY, high ρ , small X₀ and R_M, long τ_{decay} , (free form L3?)
- Expected performance:
 - □ $\sigma(E)/E = 1.1\%/\sqrt{E} \oplus 0.4\%/E \oplus 1.2\%$ superB calorimeter test at BTF [NIM A 718 (2013) 107–109]
 - **α** $\sigma(\theta) = 3 \text{ mm}/1.75 \text{ m} < 2 \text{ mrad}$
 - Angular acceptance 1.5-5 degrees

PADME calorimeter simulation

PADME ecal using L3 BGO crystals

We collected ~80 BGO crystal from L3 calorimeter. We plan to cut them in 4 pieces of 10x10x210 mm³ (up to 240 ecal cells already in our hands!) Plan to test performance with 3x3mm APD and SiPM of 64 ch matrix in 2015

PADME geant4 simulation

A PADME BG event (2000 e⁺)

Search in annihilation production

Annihilation

M. Raggi

Torino 13/04/15

Experimental technique

- Search for the process: $e^+e^- \rightarrow \gamma A'$ on target e^- at rest electrons
- (10⁴ 550 MeV e⁺)/bunch beam on a 50 μm diamond target with 50 bunch/s
 Collect 4x10¹³ e⁺ on target in each year of data taking period at BTF (60% eff.)
- **D** Measure in the ECal the Eq and $\theta \gamma$ angle wrt to beam direction
- Compute the $M_{miss}^2 = (P_{e^-}^4 + P_{beam}^4 P_{\gamma}^4)^2$

$$P_{e^-}^4 = (0,0,0,m_e) \text{ and } P_{beam}^4 = (0,0,550,\text{sqrt}(550^2 + m_e^2))$$

Main background sources

- Geant4 simulation accounts for:
 - Bremsstrahlung, 2 photon annihilation, Ionization processes, Bhabha and Moller scattering, and production of δ -rays.
 - Custom treatment of $e^+e^- \rightarrow \gamma\gamma(\gamma)$ using CalcHep generator.


```
Signal: e^+e^- \rightarrow \gamma +missing mass (A')
```


Torino 13/04/15

Inclusive signal selection

- Removes low energy bremsstrahlung photons and piled up clusters
- Positron veto using the spectrometer
 - \blacksquare $E_{e^+} < 500 \ MeV$ then (E_{beam} E_{e^+} E_{cl}) $> 50 \ MeV$
 - Reject BG from bremsstrahlung identifying primary positrons
- Missing mass in the region: $M_{miss}^2 A' \pm \sigma Mmiss^2 A'$

Background estimates

Data M_{miss}² Events/5 MeV² Number of background events M²_{miss} no cuts 350⊟ **Total** M²_{miss} cuts $e^+e^- \rightarrow \gamma \gamma \gamma \gamma$ 300⊢ $e^+e^- \rightarrow \gamma\gamma(\gamma)$ 10^{3} 250 200Ē 10² Pile up 150 I.I.T 100 10 50F 0 2 4 6 8 20 10 12 16 14 18 -300 500 -200 100 200 300 400 600 A' Mass [MeV] -100 0 M²_{miss} (MeV)

■ BG sources are: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \gamma\gamma\gamma$, $e^+N \rightarrow e^+N\gamma$, Pile up

- Pile up contribution is important but rejected by the maximum cluster energy cut and M_{Miss}².
- Veto inefficiency at high missing mass (E(e⁺) ~ E(e⁺)_{beam})
 - New Veto detector introduced to reject residual BG
 - New sensitivity estimate ongoing

M. Raggi

PADME invisible sensitivity estimate

- Based on 1x10¹¹ fully GEANT4 simulated e⁺ on target events
- Number of BG events is extrapolated to 4x10¹³ electrons on target
 - Using N(A' γ)= σ (N_{BG})
 - δ enhancement factor $\delta(M_{A'}) = \sigma(A'\gamma)/\sigma(\gamma\gamma)$ with $\epsilon=1$

Search in bremsstrahlung production

Bremsstrahlung

M. Raggi

Torino 13/04/15

Visible search experiment

- □ Search for the process: $e^-N \rightarrow Ne^-A' \rightarrow Ne^-e^-e^+$
- 750 MeV electron beam on a ~0.5 mm tungsten target
- Measure in the spectrometer only the $P_{e^-}^4 P_{e^+}^4$
- Compute the $M_{A^{,2}} = (P_{e^{-}}^4 + P_{e^{+}}^4)^2$ and decay vertex position
 - Search for peaks in the e⁺e⁻ invariant mass

Indication on visible decay sensitivity

- Production cross section calculated with MADGraph code
- Final state is more constrained by invariant mass of the e⁺e⁻ pair
- Indication of a limit down to $\varepsilon^2 \sim 10^{-7}$ is expected at low masses
 - Density of tracks in the spectrometer is the crucial point to be clarified
 - Design of the spectrometer not yet finalized

Electron dumps experiments

PADME dump toymc

- Try to evaluate driving design parameters for the PADME dump
- Toymc includes:
 - Production cross section calculated by MADgraph (thanks to A. Celentano) $\frac{d\sigma_{\gamma'}}{dx_e \ d\cos \theta_{\gamma'}} = 8\alpha^3 \chi^2 E_e^2 x_e \ \xi(E_e, m_{\gamma'}, Z, A) \sqrt{1 \frac{m_{\gamma'}^2}{E_e^2}} \left[\frac{1 x_e + \frac{x_e^2}{2}}{U^2} + \frac{(1 x_e)^2 m_{\gamma'}^4}{U^4} \frac{(1 x_e) x_e m_{\gamma'}^2}{U^3} \right],$
 - Evaluate the produced number of dark photons

$$N_{\gamma'} = \sigma_{\gamma'} N_e n_{\rm sh} L_{\rm sh} = \sigma_{\gamma'} N_e \frac{N_0}{A} \rho_{\rm sh} L_{\rm sh},$$

Scale by decay length acceptance

$$\frac{dP(l)}{dl} = \frac{1}{l_{\gamma'}} e^{-l/l_{\gamma'}}$$

- Scale by electron acceptance in the detector using kinematical distribution from a toy
 - Distribution have been compared with MADGraph for several M_U
- Not yet implemented final in depth production of the A'
 - Reduce # electron of 1/e each X₀ (pessimistic!)
 - Next plot not to be considered exclusions still

PADME dump main parameters

Dark photon production

Decay length acceptance applied

Electron angular acceptance

Acceptance as function of MU

Dump comparison

Zero BG hypothesis, in depth production to be refined, not yet a sensitivity plot

1.10²⁰, 1.2 GeV electrons; 20 cm aperture at 50 cm from 10 cm W dump

BDX @ LNF

Beam energy **1.2 GeV** (e⁻) Csl detector 60×60×225 cm³ built with crystals from dismounted BaBar ECal?

PADME project plans

- Project has been presented as a "What Next" Project in INFN CSN1
 - The project has received positive comments form CSN1 referees
 - Proposal for R&D financing will be discussed in the next CSN1 meeting
- Proto collaboration formed including
 - LNF, Rome1, Lecce and Sofia university
- □ 6 weeks test beam time asked at DAΦNE BTF in 2015
 - Study the prototype of BGO calorimeter solution (L3 crystals)
 - Test diamond target prototypes
 - Study the maximum beam current per bunch and beam spot size
 - Optimize beam characteristics for PADME operation bunch length, number of particle per bunch, background, beam positioning stability
- Interesting synergy with BDX project identified (BDX at LNF?)
- Many item still to be covered! Search for more collaborators started

PADME kick-off meeting

PADME kickoff meeting

20-21 April 2015 Laboratori Nazionali di Frascati

Overview	Massive photon-like particles are predicted in many extensions of the Standard Model. They have interactions similar to the photon, are vector bosons, and can be produced together with photons.
Scientific Programme	The PADME experiment proposes a search for the dark photon (U) in the $e^+e^- \rightarrow \gamma U$ process in a positron-on-target experiment, exploiting the positron beam of the DAΦNE BTF, produced by the linac at the Laboratori Nazionali di
Timetable	Frascati, INFN.
Contribution List	from 2.5 MeV < M_U < 22.5 MeV. To exploit the production of dark photons in Bremsstrahlung processes and their
Author index	subsequent decay into pairs of leptons U \rightarrow e ⁺ e ⁻ the experiment employs a magnetic spectrometer, which allows to probe and improve the current exclusions limits by extracting the linac electron beam at maximum intensity (~ 10 ²⁰ EOT/year) on a dump
	This meeting aims at identifying the necessary research and development, design and simulation issues that will lead to the preparation of a draft of a Technical Proposal before the summer. The event will also further strengthen the PADME collaboration by bringing together a large community of colleagues who are interested in this kind of

PADME website http://www.lnf.infn.it/acceleratori/padme/index.html

physics.

Conclusions and plans

- An experiment running at DA Φ NE BTF sensitive to both A'→invisible and A'→e⁺e⁻ decays has been proposed to INFN CSN1
- Exclusion limit in ε² down to 1-2•10⁻⁶ can be achieved in invisible decays with the present BTF beam parameters in the region M_A, 2-22 MeV (28 with e⁺ energy 750 MeV)
 - M. Raggi and V. Kozhuharov, Advances in High Energy Physics Vol. 2014 ID 959802,
- Possible accessible regions for a bremsstrahlung produced A'→e *e⁻ were identified to reach ~100MeV
 - Detailed study of the sensitivity in this channel are ongoing
- Beam dump experiment searching for both visible and invisible Dark photon decays are also possible.
- In all the cases an energy upgrade of the Linac will be desirable

SPARE SLIDES

M. Raggi

Torino 13/04/15

Dark sector with dark Higgs

- Model assumes the existence of an elementary dark Higgs h' boson, which spontaneously breaks the U(1) symmetry. PRD 79, 115008 (2009)
- U boson can be produced together with a dark Higgs h' through a Higgs-strahlung e⁺e⁻→Uh'
 - Cross section =20fb x $(\alpha/\alpha_D)(\epsilon^2/10^{-4})(10 \text{GeV})^2/\text{s}$
 - For light h' and U ($M_{U,h'}$ < 2 $M\mu$) final state with 3(e+e- pair) are predicted
 - Background events with 6 leptons are very rare at this low energies
 - Due to U,h'being very narrow resonances strong kinematical constraints are available on lepton pair masses
- Experimental search by BaBar and KLOE for U masses above 200 MeV

Experimental status U(1) + dark higgs

BaBar Phys. Rev. Lett. 108, 211801 (2012)

KLOE-2 arXiv:1501.06795

Observation of 3.5KeV X-ray line

- Recently a 3.55 KeV X-ray line (~3σ) has been reported in the stacks analysis of 73 galaxy clusters from the XMM-Newton telescope arXiv:1402.2301v1
- A similar analysis finds an evidence at the 4.4σ level for a 3.52 KeV line from the analysis of the X-ray spectrum of the Andromeda galaxy (M31) and the Perseus Cluster arXiv:1402.4119

U(1) symmetry explanation

- Many models have been developed to explain such a line based on sterile neutrinos
- A possible explanation of such a line in term of the U(1) gauge theory with an Higgs mechanism is proposed in arXiv:1404.2220v1
 - A single new scalar dark matter field φ of mass 7.1 KeV is introduced
 - φ couples to SM Higgs through A' boson
 - Due to the very small mass ϕ can only decay into $\gamma\gamma$ or $\nu\nu$ creating the Xray line at 3.5 KeV
 - After spontaneous symmetry breaking of the U(1) symmetry the A' boson becomes massive
 - Due to constraints coming from the relic abundance a mass interval has been identified by authors for the A' boson mass
 - 7KeV<M_{A'}<10MeV

Add 4 sections + 2 SLED-ed klystrons

Add 4 sections + 4 SLED-ed klystrons

BTF Energy upgrade

Improvement in case of BTF upgrades

Decays to lepton pairs

Decays to invisible

The PADME experiments can profit of any upgrade of the BTF beam

- Energy gives access to higher masses both in visible and invisible decays
- Duty cycle gives access to lower ϵ^2

MC calorimeter performance

Missing mass resolution in agreement with toy MC using

- □ $\sigma(E)/E = 1.1\%/\sqrt{E} \oplus 0.4\%/E \oplus 1.2\%$ [NIM A 718 (2013) 107–109]
- Differences are ~ 10%
- Resolution is the result of combination of angular resolution energy resolution and angle energy correlation due to production

The yy normalization selection

$$N_{\gamma\gamma}^{tot} = \frac{N_{\gamma\gamma}}{Acc_{\gamma\gamma}} = Flux(e^+) \cdot \sigma_{\gamma\gamma}$$

• Acc_{yy} = 7%

Contamination from bremsstrahlung < 1‰</p>

Possible BTF upgrades

- Energy upgrades up to 1.2 GeV electrons
 - Proposal to reach >800 MeV energy for positrons (see V. Buonomo BTF user workshop)
- Longer Duty Cycle
 - Standard BTF duty cycle = $50*10 \text{ ns} = 5\times10^{-7} \text{ s}$
 - Already obtained upgrade 50*40ns= 20x10⁻⁷ s (Thanks to BTF team)
 - Any increase of duty cycle increase linearly experiment statistics
- Collimation system
 - Assure better beam definition for positrons beam
- Maximum current in BTF hall
 - Limited by radio protection to 6.2x10⁸ per bunch for long term operation
 - Can reach >3x10¹⁰ particle per bunch after proper screening

See recent BTF user workshop for details at: https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=7359

Indirect limits

Phys.Rev.Lett.106:080801,2011

 $\alpha^{-1} = 137.035999037(91)$

However this is based on a single measurement with drastically improved precision

PADME active target

- Diamond 50µm thick target
 Most probably strip detector
- Active area 2x2cm²
- Position resolution ~2mm in both X and Y
- Sensitive from few particle to 10⁹ particle
- Real time beam imaging
- Time resolution below 1 ns
- Readout with QDC.
- R&D can start from CIVIDEC diamond mosaic detector

CIVIDEC

Features:		
Active area:	13 mm x 13 mm	-
Energy resolution:	35 keV FWHM	NEW
Particle rate:	1 MHz	
Detector:		
Type:	sCVD Diamond Mosaic-Detector	
Diamond substrates:	4.5 mm x 4.5 mm	
Thickness:	140 µm	
Electrode structure:	3x3 mosaic structure	
Metallization:	Au electrodes	

M. Raggi

Cross section enhancement

Detector acceptance $E_b = 1.2 \text{ GeV}$

