PADME project at DAΦNE BTF

Mauro Raggi, Laboratori Nazionali di Frascati

Dark Matter, Hadron Physics and Fusion Physics

Messina (Italy) - September 24th-26th, 2014

Positron Annihilation into Dark Matter Experiment
http://www.infn.infn.it/acceleratori/padme/
The simplest hidden sector model just introduces one \textbf{extra U(1) gauge symmetry} and a corresponding \textbf{gauge boson}: the “dark photon” or U boson.

Two type of interactions with SM particles should be considered.

As in QED, this will generate new interactions of the type:

\[\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu \]

Not all the SM particles need to be charged under this new symmetry.

In the \textbf{most general case} \(q_f \) is different in between leptons and quarks and can even be 0 for quarks. (P. Fayet, Phys. Lett. B 675, 267 (2009).)

The coupling constant and the charges can be generated effectively through the \textbf{kinetic mixing} between the QED and the new U(1) gauge bosons.

\[\mathcal{L}_{\text{mix}} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{\mu\nu}^{\text{dark}} \]

In this \textbf{case} \(q_f \) is just proportional to electric charge and it is equal for both quarks and leptons.
U boson production and decays

- **U boson** can be produced in e^+ collision on target by:
 - Bremsstrahlung: $e^+A \rightarrow e^+AU$
 - Annihilation : $e^+e^- \rightarrow \gamma U$

If no dark matter candidate lighter than the U boson exist:

- $U \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ the so called “Visible” decays
- For $M_U < 210$ MeV U only decay to e^+e^- $BR(e^+e^-) = 1$

If any dark matter χ with $2M_\chi < M_U$ exist

- U will dominantly decay into pure dark matter and $BR(l^+l^-)$ becomes small suppressed by ϵ^2
- $U \rightarrow \chi\chi \sim 1$ so called “Invisible” decays”
Dark photon searches status

- Favored parameters values explaining g-2 (red band)
 - U-boson light 10-100 MeV

- Status of dark photon searches
 - Beam dump experiments (grey)
 - Fixed target
 - Peak search in BG
 - Mesons decays
 - Peaks in $M(e^+e^-)$ or $M(\mu^+\mu^-)$

- Indirect exclusion from $g_e - 2 \ g_\mu - 2$
 - Recent tight limit in blue filled area

- Many different techniques, assumptions on dark photon interaction models
Status $\varepsilon_q \neq 0$ and $U \rightarrow e^+e^-$

Valid for the next 1.30 hours see E. Goudzovski talk
Status $\epsilon_q = 0$ and $U \rightarrow e^+e^-$

Identical exclusion in case of $\epsilon_q = 0$ (still for 1.30 hours)
Status regardless ε_q and U decays

\[\sigma(3e^-) - (g-2)_B(3\gamma) \]

ε vs M_μ (GeV/c^2)
Why dark photon invisible decays?

- In this scenario U boson keeps all the necessary characteristics to explain positron excess, g-2
- The invisible search technique remove any assumption except coupling to leptons
- U boson increase its capability of having escaped detection so far
- No data in the minimal assumptions

- At present there are no experimental limit for the $U \rightarrow$ invisible decay
 - Just a never published ArXiv 0808.0017 by Babar ‘08 with very limited sensitivity on ε^2 ($\Upsilon_{3S} \rightarrow \gamma U$ assumes coupling to quarks!)
 - Indirect limit from $K^+ \rightarrow \pi^+ \nu \nu$ (assumes coupling to quarks!) arXiv:1309.5084v1

- New approach by BDX with direct detection of dark matter (arXiv:1406.3028v1)
DAΦNE Beam Test Facility (BTF)

<table>
<thead>
<tr>
<th></th>
<th>electrons</th>
<th>positrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum energy [MeV]</td>
<td>750 MeV</td>
<td>550 MeV</td>
</tr>
<tr>
<td>Charge [nC]</td>
<td>5 nC</td>
<td>0.85 nC</td>
</tr>
<tr>
<td>Bunch length [ns]</td>
<td>1.5 - 40</td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>25/50 Hz</td>
<td>25/50 Hz</td>
</tr>
<tr>
<td>Typical emittance [mm mrad]</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Beam spot σ [mm]</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Longer Duty Cycle**
 - **Standard BTF** duty cycle = 50*10 ns = 5×10^{-7} s
 - Already obtained upgrade 50*40ns= 20×10^{-7} s (Thanks to BTF team)
 - Any increase of duty cycle increase linearly experiment statistics

- **Possibility for single particle beam to** 10^{10}
 - Packed in 50 bunch of ~10ns

- **The accessible M_u region is limited by beam energy**
 - Region from 0-22 MeV can be explored with 550 MeV e^+ beam
Basic detector components

- Active 50\(\mu\)m diamond target
- \(10^3\)-\(10^4\) \(e^+\) on target per bunch at 50 bunch/s (\(10^{13}\)-\(10^{14}\) \(e^+/\text{year}\))
- GEM based magnetic spectrometer \(~1\text{m length}\)
- Conventional 0.6T magnet
- 15 cm radius cylindrical LYSO calorimeter with 1x1x15 cm\(^3\) crystals
Search in annihilation production

\[e^- \quad \rightarrow \quad U \quad \rightarrow \quad e^+ \quad \gamma \]

Annihilation
Experimental technique

- Search for the process: $e^+e^- \rightarrow \gamma U$ on target e^- at rest electrons
- 550 MeV positron beam on a $50 \, \mu$m diamond target
- Measure in the ECal the E_γ and θ_γ angle wrt to beam direction
- Compute the $M_{\text{miss}}^2 = (P_{e^-}^4 + P_{\text{beam}}^4 - P_{\gamma}^4)^2$
 - $P_{e^-}^4 = (0,0,0,m_e)$ and $P_{\text{beam}}^4 = (0,0,550,\sqrt{550^2 + m_e^2})$
Signal selection

Selection cuts (all decay modes)

- Only one cluster in EM calo
 - Rejects $e^+e^- \rightarrow \gamma\gamma$ final state

- $5 \text{ cm} < R_{\text{Cl}} < 13 \text{ cm}$
 - Improve shower containment

- Cluster energy within: $E_{\text{min}}(M_U) < E_{\text{Cl}} < 400 \text{ MeV}$
 - Removes low energy bremsstrahlung photons and pile up clusters

- Positron veto in the spectrometer
 - $E_{e^+} < 500 \text{ MeV}$ then $(E_{\text{beam}} - E_{e^+} - E_{\text{cl}}) > 50 \text{ MeV}$
 - Reject BG from bremsstrahlung identifying primary positrons

- Missing mass in the region: $M_{\text{miss}}^2 \pm \sigma M_{\text{miss}}^2$
BG sources are: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \gamma\gamma\gamma$, $e^+N \rightarrow e^+N\gamma$, Pile up

Pile up contribution is important but rejected by the maximum cluster energy cut and M_{Miss}^2.

Veto inefficiency at high missing mass ($E(e^+) \approx E(e^+)_{beam}$)

- New Veto detector introduced to reject residual BG
- New sensitivity estimate ongoing
PADME sensitivity estimate

- Based on 1×10^{11} fully GEANT4 simulated e^+ on target events

- Number of BG events is extrapolated to 4×10^{13}
 - Using $N(U\gamma) = \sigma(N_{BG})$
 - δ enhancement factor $\delta(M_U) = \sigma(U\gamma)/\sigma(\gamma\gamma)$ with $\varepsilon = 1$

\[
\frac{\Gamma(e^+e^- \rightarrow U\gamma)}{\Gamma(e^+e^- \rightarrow \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} \times \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \varepsilon^2 \times \delta
\]
Search in bremsstrahlung production

Bremsstrahlung
Visible analysis strategy

- Search for the process: $e^+N \rightarrow Ne^+U \rightarrow Ne^+e^+e^-$
- 550 MeV positron beam on a 50 µm diamond target
- Measure in the spectrometer only the $P_{e^-}^4 + P_{e^+}^4$
- Compute the $M_U^2 = (P_{e^-}^4 + P_{e^+}^4)^2$
Ratio of bremsstrahlung wrt to annihilation at 1MeV ~ 400

Scaling low of the U-strahlung is $1/M_U^2$

Final state is more constrained by invariant mass of the e^+e^- pair

Naively a limit down to $\sim \varepsilon < 4 \times 10^{-4}$ is expected at low masses
 - Only an indication no real simulation so far!
Early study for a beam dump experiment @ LNF (Sarah Andreas)

- 1E7 electrons of energy 750 MeV per bunch in 50 bunch/s over 1 year
- Total e- on target being: 50*1\times10^7*3.15\times10^7 = 1.6\times10^{16} (we use 1\times10^{16})
- Study based on 0 events observed after the dump. (not easy to achieve)
- Much better sensitivity can be achieved using a total 10^{20} e- on target
- Further improvement by using longer decay region
<table>
<thead>
<tr>
<th>Experiment</th>
<th>target</th>
<th>E_0 [GeV]</th>
<th>N_{el} electrons</th>
<th>Coulomb</th>
<th>L_{sh} [m]</th>
<th>L_{dec} [m]</th>
<th>N_{obs}</th>
<th>$N_{95%up}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E141 [47]</td>
<td>W</td>
<td>9</td>
<td>2×10^{15}</td>
<td>0.32 mC</td>
<td>0.12</td>
<td>35</td>
<td>1126</td>
<td>$^{+1312}_{-1126}$ 3419</td>
</tr>
<tr>
<td>E137 [48]</td>
<td>Al</td>
<td>20</td>
<td>1.87×10^{20}</td>
<td>30 C</td>
<td>179</td>
<td>204</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E774 [49]</td>
<td>W</td>
<td>275</td>
<td>5.2×10^{9}</td>
<td>0.83 nC</td>
<td>0.3</td>
<td>2</td>
<td>0$^{+9}_{-0}$ 18</td>
<td></td>
</tr>
<tr>
<td>KEK [39]</td>
<td>W</td>
<td>2.5</td>
<td>1.69×10^{17}</td>
<td>27 mC</td>
<td>2.4</td>
<td>2.2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Orsay [40]</td>
<td>W</td>
<td>1.6</td>
<td>2×10^{16}</td>
<td>3.2 mC</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PADME dump</td>
<td>W</td>
<td>0.8</td>
<td>$1 \cdot 10^{16}$</td>
<td>~1.6 mC</td>
<td>0.1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PADME dump+</td>
<td>W</td>
<td>1.2</td>
<td>$2 \cdot 10^{20}$</td>
<td>~30 C</td>
<td>0.1-2</td>
<td>5-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Due to authorization of LNF site we cannot exceed
 - Total limit on Year at BTF = 9.8×10^{17} e$^-$/Year

- PADME dump+ (E upgrade, improved authorization)
 - BTF maximum current 1.2×10^{11} e$^-$/bunch (40ns):
 - e$^-$/Year=$1.2 \times 10^{11} \times 50 \times 3.15 \times 10^7$=$1.9 \times 10^{20}$ e$^-$/Year
 - We can get 4.5×10^{17} in 3 days at 3×10^{10} e$^-$/bunch
Project status

- Project has been presented as a What Next Project in INFN CSN1
 - The project has received referees and its under study
 - Proposal for R&D financing will be discussed in the next CSN1 meeting

- Proto collaboration formed including
 - LNF, Rome1, Lecce and Sofia university

- Interesting synergy with BDX project identified (BDX at LNF?)

- 2 weeks test beam time planned in December at DAΦNE LINAC
 - Asses the maximum beam current per bunch and beam spot

- Many item still to be covered! Search for more collaborators started
Conclusions

- An experiment running at DAΦNE LINAC sensitive to both U→invisible and U→e⁺e⁻ decays is proposed.

- Sensitivity study for U boson produced into annihilation process e⁺e⁻ → γU was presented.
 - The detection through missing mass is independent of the U decay mode and never performed so far.

- Exclusion limit in ε² down to 1-2·10⁻⁶ can be achieved in invisible decays with the present BTF beam parameters in the region M_u 2-20 MeV.

- *M. Raggi and V. Kozhuharov, Advances in High Energy Physics Vol. 2014 ID 959802, 14 pages*

- Possible accessible regions for a bremsstrahlung produced U→e⁺e⁻ were identified to reach 100 MeV.
 - Detailed study of the sensitivity in this channel is planned.
 - Need theoretical guidance to implement a bremsstrahlung generator in the PADME GEANT MC.
Expected results for PADME are shown for annihilation production only. Accessible regions in the decays to lepton pairs are shown.

Many competitors in e^+e^- decay scenario, APEX, HPS, MAMI A1.

Only VEPP3 proposal in the invisible searches (exclusion is a naïve estimate).
The PADME experiments can profit of any upgrade of the BTF beam

- Energy gives access to higher masses both in visible and invisible decays
- Duty cycle gives access to lower ε^2
- In case of Bremsstrahlung production duty cycle helps also in the mass ranges

Mauro Raggi & Venelin Kozhuharov - I.N.F.N. - LNF 27/09/14
Dark sector with dark Higgs

- Model assumes the existence of an elementary dark Higgs h' boson, which spontaneously breaks the $U(1)$ symmetry.

 PRD 79, 115008 (2009)

- U boson can be produced together with a dark Higgs h' through a Higgs-strahlung $e^+e^-\rightarrow Uh'$

 - Cross section $=20 fb \times (\alpha/\alpha_D)(\varepsilon^2/10^{-4})(10 \text{GeV})^2/s$

 - For light h' and U ($M_{U,h'}<2M_W$) final state with 3(e^+e^- pair) are predicted

 - Background events with 6 leptons are very rare at this low energies

 - Due to U,h'being very narrow resonances strong kinematical constraints are available on lepton pair masses

- Experimental search by BaBar and KLOE for U masses above 200 MeV
Production mechanism being bremsstrahlung allows PADME to reach >100 MeV U masses

No data available below 200 MeV in M_U

PADME can provide sensitivity in unexplored parameter region.
The $\gamma\gamma$ normalization selection

$$N_{\gamma\gamma}^{tot} = \frac{N_{\gamma\gamma}}{Acc_{\gamma\gamma}} = Flux(e^+) \cdot \sigma_{\gamma\gamma}$$

- Number of calorimeter clusters = 2
- Cluster energy: $100\text{MeV} < E_{cl} < 400\text{ MeV}$
- Cluster radial position $5\text{ cm} < R_{Cl} < 13\text{ cm}$
- $\gamma\gamma$ invariant mass $20\text{ MeV} < M_{\gamma\gamma} < 26\text{ MeV}$

- $Acc_{\gamma\gamma} = 7\%$
- Contamination from bremsstrahlung $< 1\%$

$$M_{\gamma\gamma} = \frac{\sqrt{[(X_{\gamma1} - X_{\gamma2}) + (Y_{\gamma1} - Y_{\gamma2})]E_{\gamma2}E_{\gamma2}}}{Z_{EMcal} - Z_{Target}}$$
Possible BTF upgrades

- Energy upgrades up to 1.2 GeV electrons
 - Proposal to reach >800 MeV energy for positrons (see V. Buonomo BTF user workshop)

- Longer Duty Cycle
 - **Standard BTF duty cycle = 50*10 ns = 5x10^{-7} s**
 - Already obtained upgrade 50*40ns= 20x10^{-7} s (Thanks to BTF team)
 - Any increase of duty cycle increase linearly experiment statistics

- Collimation system
 - Assure better beam definition for positrons beam

- Maximum current in BTF hall
 - Limited by radio protection to 6.2x10^8 per bunch for long term operation
 - Can reach >3x10^{10} particle per bunch after proper screening

See recent BTF user workshop for details at: https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=7359
Particle astrophysics PAMELA AMS

- Positron excess: PAMELA, FERMI, AMS02
- No significant excess in antiprotons
 - Consistent with pure secondary production
- Leptofilic dark matter annihilation?

Mauro Raggi & Venelin Kozhuharov - I.N.F.N. - LNF 27/09/14
If Dark Matter is the explanation to the positron excess, then the mediator should be light \((< 2M_{\text{proton}})\).

Coupling constant to DM could be arbitrary (even 0 (1)).

The Lagrangian term can arise through
- Fermions being charged (mili) under this new gauge symmetry \((q_f \to 0\) for some flavors)
- Kinetic mixing between ordinary photon and DM one
- Using simply an effective description

\[
\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu
\]
Muon g-2 SM discrepancy

About 3σ discrepancy between theory and experiment (3.6σ, if taking into account only $e^+e^-\rightarrow\text{hadrons}$)

Contribution to g-2 from dark photon

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi}\varepsilon^2 F\left(\frac{m_V}{m_\mu}\right),$$

(17)

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] \, dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100\,\text{MeV}$, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon $g-2$ discrepancy. Searches for the dark
The DAMA-Libra effect

- Nuclear recoil by the exchange of a dark photon
- Independent of χ mass value
Observation of 3.5KeV X-ray line

- Recently a 3.55 KeV X-ray line ($\sim 3\sigma$) has been reported in the stacks analysis of 73 galaxy clusters from the XMM-Newton telescope [arXiv:1402.2301v1]

- A similar analysis finds an evidence at the 4.4σ level for a 3.52 KeV line from the analysis of the X-ray spectrum of the Andromeda galaxy (M31) and the Perseus Cluster [arXiv:1402.4119]
Many models have been developed to explain such a line based on sterile neutrinos.

A possible explanation of such a line in terms of the U(1) gauge theory with an Higgs mechanism is proposed in arXiv:1404.2220v1.

- A single new scalar dark matter field ϕ of mass 7.1 KeV is introduced.
- ϕ couples to SM Higgs through U boson.
- Due to the very small mass ϕ can only decay into $\gamma\gamma$ or $\nu\nu$ creating the Xray line at 3.5 KeV.
- After spontaneous symmetry breaking of the U(1) symmetry the U boson becomes massive.
- Due to constraints coming from the relic abundance a mass interval has been identified by authors for the U boson mass:
 - $7\text{KeV} < M_U < 10\text{MeV}$
Indirect limits

\[\alpha^{-1} = 137.035999037(91) \]

However this is based on a single measurement with drastically improved precision

2σ limit from new \(\alpha \),

Phys Rev D 86, 095029 (2012)

\[|a_e^{th} - a_e^{exp}| = (1.06 \pm 0.82) \times 10^{-12} \]
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Extra assumptions</th>
<th>Results</th>
<th>Technique</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLOE2</td>
<td>$Q_q \neq 0$ & $U \rightarrow e^+e^-$</td>
<td>YES</td>
<td>$\phi \rightarrow \eta e^+e^-$</td>
<td>Running</td>
</tr>
<tr>
<td>KLOE2</td>
<td>$U \rightarrow \mu^+\mu^-$</td>
<td>Prel.</td>
<td>$e^+e^- \rightarrow \mu^+\mu^-\gamma$</td>
<td>Running</td>
</tr>
<tr>
<td>APEX</td>
<td>$U \rightarrow e^+e^-$</td>
<td>YES</td>
<td>e^- on target</td>
<td>Completed</td>
</tr>
<tr>
<td>HPS</td>
<td>$U \rightarrow e^+e^-$</td>
<td></td>
<td>e^- on target</td>
<td>Start running 2014</td>
</tr>
<tr>
<td>BABAR</td>
<td>$Q_q \neq 0$ & $U \rightarrow \mu^+\mu^-$</td>
<td>YES</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>A1 (MAMI)</td>
<td>$U \rightarrow e^+e^-$</td>
<td>YES</td>
<td>e^- on target</td>
<td>Completed</td>
</tr>
<tr>
<td>WASA (cosy)</td>
<td>$Q_q \neq 0$ & $U \rightarrow e^+e^-$</td>
<td>YES</td>
<td>$\pi^0 \rightarrow e^+e^-\gamma$</td>
<td>Completed</td>
</tr>
<tr>
<td>SHIP</td>
<td>$Q_q \neq 0$ & $U \rightarrow e^+e^-$</td>
<td></td>
<td>$\pi^0 \rightarrow e^+e^-\gamma$</td>
<td>Proposal (2023)</td>
</tr>
<tr>
<td>DARK LIGHT</td>
<td>$U \rightarrow e^+e^-$</td>
<td></td>
<td></td>
<td>Planned (2016?)</td>
</tr>
<tr>
<td>VEPP3</td>
<td>NONE</td>
<td></td>
<td></td>
<td>Proposal (unknown)</td>
</tr>
<tr>
<td>HADES</td>
<td>$Q_q \neq 0$ U $\rightarrow e^+e^- + 5$</td>
<td>YES</td>
<td>P on nuclei</td>
<td>Completed</td>
</tr>
<tr>
<td>SINDRUM</td>
<td>$Q_q \neq 0$ U $\rightarrow e^+e^-$</td>
<td>YES</td>
<td>$\pi^0 \rightarrow e^+e^-\gamma$</td>
<td>Completed</td>
</tr>
<tr>
<td>NA48/2</td>
<td>$Q_q \neq 0$ U $\rightarrow e^+e^-$</td>
<td>YES</td>
<td>$\pi^0 \rightarrow e^+e^-\gamma$</td>
<td>Completed</td>
</tr>
<tr>
<td>P348 (CERN)</td>
<td>U $\rightarrow e^+e^-$ or NONE</td>
<td></td>
<td>e^- on target</td>
<td>Proposal (2016?)</td>
</tr>
<tr>
<td>PADME</td>
<td>NONE</td>
<td></td>
<td>e^+ on target</td>
<td>Proposal (2016?)</td>
</tr>
</tbody>
</table>
Beam conditions

- In the present study we assume that the BTF will be able to deliver:
 - 1E4 positrons of energy 550 MeV per bunch in 50 bunch/s over 1 year
 - Total \(e^+ \) on target being: \(50 \times 1E4 \times 3.15E7 = 1.6E13 \) (we use 1E13)
 - Beam energy spread \(\sim 1\% \) (BTF can do much better)
 - RMS of beam position 2mm and emittance 1mm*mrad
 - Bunch duration 10 ns (can already go up to 40ns)

Beam Profile 486MeV

Integated beam spot

Measurement of the beam spread

Medipix detectors

FWHM 2.4 \times 1.8 mm

Single bunch beam spot

Beam E spread

Missing mass resolution in agreement with toy MC using

\[\sigma(E)/E = 1.1\%/\sqrt{E} \oplus 0.4\%/E \oplus 1.2\% \] [NIM A 718 (2013) 107–109]

Differences are ~ 10%

Resolution is the result of combination of angular resolution energy resolution and angle energy correlation due to production
PADME active target

- Diamond 50\(\mu\)m thick target
 - Most probably strip detector
- Active area 2x2cm\(^2\)
- Position resolution \(~2\)mm in both X and Y
- Sensitive from few particle to \(10^9\) particle
- Real time beam imaging
- Time resolution below 1ns
- Readout with QDC.

- R&D can start from CIVIDECL Diamond mosaic detector

Features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active area</td>
<td>13 mm x 13 mm</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>35 keV FWHM</td>
</tr>
<tr>
<td>Particle rate</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Detector:

<table>
<thead>
<tr>
<th>Type</th>
<th>sCVD Diamond Mosaic-Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond substrates</td>
<td>4.5 mm x 4.5 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>140 (\mu)m</td>
</tr>
<tr>
<td>Electrode structure</td>
<td>3x3 mosaic structure</td>
</tr>
<tr>
<td>Metallization</td>
<td>Au electrodes</td>
</tr>
</tbody>
</table>
- Conventional magnet with B=0.6 Tesla

- Generic cylindrical chamber filled with gas
 - Inner radius 20 cm outer radius 25 cm length 100 cm
 - 5 cylindrical layers of 1 cm each

- Expected to measure track crossing position with 300 µm resolution

- Used in the experiment to veto positron and to reconstruct mass of lepton pairs.
The electromagnetic calorimeter

- **Cylindrical shape:** radius 15 cm, depth of 15-20 cm
 - Inner hole 4 cm radius
 - Active volume 9840 cm\(^3\) total of 656 crystals 1x1x15-20 cm\(^3\)

- **Material LSO(Ce):** high LY, high \(\rho\), small \(X_0\) and \(R_M\), short \(\tau_{\text{decay}}\)

- **Expected performance:**
 - \(\sigma(E)/E = 1.1%/\sqrt{E} \pm 0.4%/E \pm 1.2\%\) superB calorimeter test at BTF [NIM A 718 (2013) 107–109]
 - \(\sigma(\theta) = 3\) mm/1.75 m < 2 mrad
 - Angular acceptance 1.5-5 degrees