PADME project at DA Φ NE BTF

Mauro Raggi, Laboratori Nazionali di Frascati

Dark Matter, Hadron Physics and Fusion Physics

Messina (Italy) - September 24th-26th, 2014

Positron Annihilation into Dark Matter Experiment http://www.lnf.infn.it/acceleratori/padme/

The simplest dark sector model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or U boson.
 Two type of interactions with SM particles should be considered
- As in QED, this will generate new interactions of the type:

$$\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$$

- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. (P. Fayet, Phys. Lett. B 675, 267 (2009).)
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

In this case q_f is just proportional to electric charge and it is equal for both quarks and leptons.

U boson production and decays

- U boson can be produced in e⁺ collision on target by:
 - Bremsstrahlung: $e^+A \rightarrow e^+AU$
 - Annihilation : $e^+e^- \rightarrow \gamma U$

Bremsstrahlung

Annihilation

- If no dark matter candidate lighter than the U boson exist:
 - $U \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ the so called "Visible" decays
 - For M_U <210 MeV U only decay to e⁺e⁻BR(e+e-)=1
- If any dark matter χ with $2M_{\chi} < M_{U}$ exist
 - U will dominantly decay into pure dark
 matter and BR(I+I-) becomes small suppressed by ε² ω²
 - $U \rightarrow \chi \chi \sim 1$ so called "Invisible" decays"

Dark photon searches status

- Favored parameters values explaining g-2 (red band)
 U-boson light 10-100 MeV
- Status of dark photon searches
 - Beam dump experiments (grey)
 - Fixed target
 - Peak search in BG
 - Mesons decays
 - Peaks in M(e+e-) or $M(\mu+\mu-)$
- Indirect exclusion from $g_e-2 g_u-2$
 - Recent tight limit in blue filled area

Many different techniques, assumptions on dark photon interaction models

Status $\varepsilon_a \neq 0$ and $U \rightarrow e^+e^-$

Status ε_a =0 and U→e⁺e⁻

Status regardless ϵ_{a} and U decays

Why dark photon invisible decays?

- In this scenario U boson keeps all the necessary characteristics to explain positron excess, g-2
- The invisible search technique remove any assumption except coupling to leptons
- U boson increase its capability of having escaped detection so far
- No data in the minimal assumptions

- At present there are no experimental limit for the U \rightarrow invisible decay
 - Just a never published ArXiv 0808.0017 by Babar '08 with very limited sensitivity on ϵ^2 (Y_{3S}→yU assumes coupling to quarks!)
 - Indirect limit from $K^+ \rightarrow \pi^+ v v$ (assumes coupling to quarks!) arXiv:1309.5084v1
- New approach by BDX with direct detection of dark matter (arXiv:1406.3028v1)

DA Φ NE Beam Test Facility (BTF)

	electrons	positrons		
Maximum energy [MeV]	750 MeV	550 MeV		
Charge [nC]	5 nC	0.85 nC		
Bunch length [ns]	1.5 - 40			
Repetition rate	25/50 Hz	25/50 Hz		
Typical emittance [mm mrad]	1	1.5		
Beam spot σ [mm]	2	2		

Longer Duty Cycle

- Standard BTF duty cycle = $50*10 \text{ ns} = 5\times10^{-7} \text{ s}$
- Already obtained upgrade 50*40ns= 20x10⁻⁷ s (Thanks to BTF team)
- Any increase of duty cycle increase linearly experiment statistics
- Possibility for single particle beam to 10¹⁰
 Packed in 50 bunch of ~10ns
- The accessible M_U region is limited by beam energy
 - Region from 0-22 MeV can be explored with 550 MeV e⁺ beam

The PADME experiment proposal

- Basic detector components
 - Active 50µm diamond target
 - $10^{3}-10^{4} e^{+}$ on target per bunch at 50 bunch/s ($10^{13}-10^{14} e^{+}$ /year)
 - GEM based magnetic spectrometer ~1m length
 - Conventional 0.6T magnet
 - 15 cm radius cylindrical LYSO calorimeter with 1x1x15 cm³ crystals

Search in annihilation production

Annihilation

Experimental technique

- Search for the process: $e^+e^- \rightarrow \gamma U$ on target e^- at rest electrons
- **550** MeV positron beam on a 50 μm diamond target
- **D** Measure in the ECal the Eq and θ_{γ} angle wrt to beam direction
- Compute the $M_{miss}^2 = (P_{e^-}^4 + P_{beam}^4 P_{\gamma}^4)^2$ $P_{e^-}^4 = (0,0,0,m_e) \text{ and } P_{beam}^4 = (0,0,550,\text{sqrt}(550^2 + m_e^2))$

Signal selection

- Removes low energy bremsstrahlung photons and pile up clusters
- Positron veto in the spectrometer
 - \blacksquare $E_{e^+} < 500 \ MeV$ then (E_{beam} E_{e^+} E_{cl}) $> 50 \ MeV$
 - Reject BG from bremsstrahlung identifying primary positrons
- Missing mass in the region: $M_{miss}^2 = \sigma M miss^2$

Background estimates

■ BG sources are: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \gamma\gamma\gamma$, $e^+N \rightarrow e^+N\gamma$, Pile up

- Pile up contribution is important but rejected by the maximum cluster energy cut and M_{Miss}².
- Veto inefficiency at high missing mass (E(e⁺) ~ E(e⁺)_{beam})
 - New Veto detector introduced to reject residual BG
 - New sensitivity estimate ongoing

Mauro Raggi & Venelin Kozhuharov - I.N.F.N. - LNF

27/09/14

PADME sensitivity estimate

Based on 1x10¹¹ fully GEANT4 simulated e⁺ on target events

Number of BG events is extrapolated to $4x10^{13}$

• Using N(U γ)= σ (N_{BG})

• δ enhancement factor $\delta(M_U) = \sigma(U\gamma)/\sigma(\gamma\gamma)$ with $\epsilon=1$

Search in bremsstrahlung production

Bremsstrahlung

Visible analysis strategy

- □ Search for the process: $e^+N \rightarrow Ne^+U \rightarrow Ne^+e^+e^-$
- 550 MeV positron beam on a 50 μm diamond target
- Measure in the spectrometer only the P⁴_e- P⁴_e+
- Compute the $M_{U}^{2} = (P_{e^{-}}^{4} + P_{e^{+}}^{4})^{2}$

Indication on visible decay sensitivity

- Ratio of bremsstrahlung wrt to annihilation at 1MeV ~ 400
- Scaling low of the U-strahlung is $1/M_{U}^{2}$
- Final state is more constrained by invariant mass of the e⁺e⁻ pair
- Naively a limit down to ~ε<4x10⁻⁴ is expected at low masses
 Only an indication no real simulation so far!

PADME dump experiment

Early study for a beam dump experiment @ LNF (Sarah Ándreas)

- IE7 electrons of energy 750 MeV per bunch in 50 bunch/s over 1 year
- Total e^- on target being: $50^*1x10^{7*}3.15x10^7 = 1.6x10^{16}$ (we use $1x10^{16}$)
- Study based on 0 events observed after the dump. (not easy to achieve)
- Much better sensitivity can be achieved using a total 10²⁰ e⁻ on target
 - Further improvement by using longer decay region

Electron dumps experiments

Evenoviment			E_0	$N_{\rm el}$		$L_{\rm sh}$	L_{dec}	Ν,	N	
	Experiment	target	$[\mathrm{GeV}]$	electrons	Coulomb	[m]	[m]	Nobs	$N_{95\%up}$	
	E141 47	W	9	2×10^{15}	$0.32~{ m mC}$	0.12	35	1126^{+1312}_{-1126}	3419	
	E137 48	Al	20	$1.87{ imes}10^{20}$	30 C	179	204	0	3	
	E774 49	W	275	5.2×10^{9}	0.83 nC	0.3	2	0^{+9}_{-0}	18	
	KEK [39]	W	2.5	$1.69{ imes}10^{17}$	$27 \ {\rm mC}$	2.4	2.2	0	3	
	Orsay 40	W	1.6	2×10^{16}	$3.2 \mathrm{~mC}$	1	2	0	3	
	PADME dump	W	0.8	1 • 10 ¹⁶	~1.6mC	0.1	2	<u> </u>		· · · · · · ·
	PADME dump	+ W	1.2	2 • 10 ²⁰	~ 30 C	0.1-2	5-10 ¹⁰ 10) ⁻²	E774	
Due to authorization of LNF site we cannot exceed 10^{-4} Total limit on Year at BTF = 9.8x10 ¹⁷ e ⁻ /Year										
	 PADME dump+ (E upgrade, improved authorization)¹⁰⁻⁶ BTF maximum current 1.2x10¹¹ e-/bunch (40ns): 10⁻⁷ KEK E137 									
	$10^{-2} 10^{-1}$									
		an get	4.5X10	· II 3 aay	S OF 3XIU	ve/c	JUNCN		$m_{\gamma'}$ [GeV]	
				Mauro	Raaai & Vene	lin Kozhu	harov - I.I	N.F.N I NF	27/09/14	20

Project status

- Project has been presented as a What Next Project in INFN CSN1
 - The project has received referees and its under study
 - Proposal for R&D financing will be discussed in the next CSN1 meeting
- Proto collaboration formed including
 - LNF, Rome1, Lecce and Sofia university
- Interesting synergy with BDX project identified (BDX at LNF?)
- \blacksquare 2 weeks test beam time planned in December at DA Φ NE LINAC
 - Asses the maximum beam current per bunch and beam spot
- Many item still to be covered! Search for more collaborators started

Conclusions

- An experiment running at DA Φ NE LINAC sensitive to both U \rightarrow invisible and U \rightarrow e⁺e⁻decays is proposed
- Sensitivity study for U boson produced into annihilation process $e^+e^- \rightarrow \gamma U$ was presented
 - The detection through missing mass is independent of the U decay mode and never performed so far
- Exclusion limit in ε² down to 1-2 · 10⁻⁶ can be achieved in invisible decays with the present BTF beam parameters in the region M_U 2-20 MeV
 - M. Raggi and V. Kozhuharov, Advances in High Energy Physics Vol. 2014 ID 959802, 14 pages
- Possible accessible regions for a bremsstrahlung produced U→e +e⁻ were identified to reach 100MeV
 - Detailed study of the sensitivity in this channel is planned
 - Need theoretical guidance to implement a bremsstrahlung generator in the PADME GEANT MC

SPARE SLIDES

Competitors

Expected results for PADME are shown for annihilation production only
 Accessible regions in the decays to lepton pairs are shown

- Many competitors in e⁺e⁻ decay scenario, APEX, HPS, MAMI A1
- Only VEPP3 proposal in the invisible searches (exclusion is a naïve estimate) Mauro Raggi & Venelin Kozhuharov - I.N.F.N. - LNF 27/09/14

Improvement in case of BTF upgrades

Decays to lepton pairs

Decays to invisible

The PADME experiments can profit of any upgrade of the BTF beam

- Energy gives access to higher masses both in visible and invisible decays
- Duty cycle gives access to lower ϵ^2
- In case of Bremsstrahlung production duty cycle helps also in the mass ranges

Dark sector with dark Higgs

- Model assumes the existence of an elementary dark Higgs h' boson, which spontaneously breaks the U(1) symmetry.
 PRD 79, 115008 (2009)
- U boson can be produced together with a dark Higgs h' through a Higgs-strahlung e⁺e⁻→Uh'
 - Cross section =20fb x $(\alpha/\alpha_D)(\epsilon^2/10^{-4})(10 \text{GeV})^2/\text{s}$
 - For light h' and U ($M_{U,h'} < 2M\mu$) final state with 3(e+e- pair) are predicted
 - Background events with 6 leptons are very rare at this low energies
 - Due to U,h'being very narrow resonances strong kinematical constraints are available on lepton pair masses

Higgs' - Strahlung

27/09/14

 e^{-}

Experimental search by BaBar and KLOE for U masses above 200 MeV

Experimental status U(1) + dark higgs

The yy normalization selection

$$N_{\gamma\gamma}^{tot} = \frac{N_{\gamma\gamma}}{Acc_{\gamma\gamma}} = Flux(e^+) \cdot \sigma_{\gamma\gamma}$$

• Acc_{$\gamma\gamma$} = 7%

Contamination from bremsstrahlung < 1‰</p>

Possible BTF upgrades

- Energy upgrades up to 1.2 GeV electrons
 - Proposal to reach >800 MeV energy for positrons (see V. Buonomo BTF user workshop)
- Longer Duty Cycle
 - Standard BTF duty cycle = $50*10 \text{ ns} = 5\times10^{-7} \text{ s}$
 - Already obtained upgrade 50*40ns= 20x10⁻⁷ s (Thanks to BTF team)
 - Any increase of duty cycle increase linearly experiment statistics
- Collimation system
 - Assure better beam definition for positrons beam
- Maximum current in BTF hall
 - Limited by radio protection to 6.2x10⁸ per bunch for long term operation
 - Can reach >3x10¹⁰ particle per bunch after proper screening

See recent BTF user workshop for details at: https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=7359

Particle astrophysics PAMELA AMS

- Positron excess: PAMELA, FERMI, AMS02
- No significant excess in antiprotons
 - Consistent with pure secondary production
- Leptofilic dark matter annihilation?

Hints for dark matter annihilation?

- If Dark Matter is the explanation to the positron excess, then the mediator should be light (< 2*M_{proton})
- Coupling constant to DM could be arbitrary (even 0(1))
- The Lagrangian term can arise through
 - Fermions being charged (mili) under this new gauge symmetry ($q_f \rightarrow 0$ for some flavors)
 - Kinetic mixing between ordinary photon and DM one
 - Using simply an effective descriptio $\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$

Muon g-2 SM discrepancy

About 3σ discrepancy between theory and experiment (3.6 σ , if taking into account only e⁺e⁻ \rightarrow hadrons)

Contribution to g-2 from dark photon

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}),$$
 (17)

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

The DAMA-Libra effect

Observation of 3.5KeV X-ray line

- Recently a 3.55 KeV X-ray line (~3σ) has been reported in the stacks analysis of 73 galaxy clusters from the XMM-Newton telescope arXiv:1402.2301v1
- A similar analysis finds an evidence at the 4.4σ level for a 3.52 KeV line from the analysis of the X-ray spectrum of the Andromeda galaxy (M31) and the Perseus Cluster arXiv:1402.4119

27/09/14

U(1) symmetry explanation

- Many models have been developed to explain such a line based on sterile neutrinos
- A possible explanation of such a line in term of the U(1) gauge theory with an Higgs mechanism is proposed in arXiv:1404.2220v1
 - A single new scalar dark matter field φ of mass 7.1 KeV is introduced
 - φ couples to SM Higgs through U boson
 - Due to the very small mass ϕ can only decay into $\gamma\gamma$ or $\nu\nu$ creating the Xray line at 3.5 KeV
 - After spontaneous symmetry breaking of the U(1) symmetry the U boson becomes massive
 - Due to constraints coming from the relic abundance a mass interval has been identified by authors for the U boson mass
 - 7KeV<M_U<10MeV

Indirect limits

Phys.Rev.Lett.106:080801,2011

 $\alpha^{-1} = 137.035999037(91)$

However this is based on a single measurement with drastically improved precision

Experimental status

Experiment	Extra assumptions	Results	Technique	Status
KLOE2	Q _q ≠0 & U→e⁺e⁻	YES	φ→ηe⁺e⁻	Running
KLOE2	$U \rightarrow \mu^+ \mu^-$	Prel.	e ⁺ e ⁻ →μ ⁺ μ ⁻ γ	Running
APEX	U→e+e-	YES	e⁻ on target	Completed
HPS	U→e⁺e⁻		e⁻ on target	Start running 2014
BABAR	Q _q ≠0 & U→µ ⁺ µ ⁻	YES		Completed
A1 (MAMI)	U→e+e-	YES	e⁻ on target	Completed
WASA (cosy)	Q _q ≠0 & U→e ⁺ e ⁻	YES	$\pi^0 \rightarrow e^+ e^- \gamma$	Completed
SHIP	Q _q ≠0 & U→e⁺e⁻		p on dump	Proposal (2023)
DARK LIGHT	U→e+e-		e⁻ on H target	Planned (2016?)
VEPP3	NONE		e⁺ on H target	Proposal (unknown)
HADES	Q _q ≠0 U→e ⁺ e ⁻ + 5	YES	P on nuclei	Completed
SINDRUM	Q _q ≠0 U→e⁺e⁻	YES	π ⁰ →e ⁺ e ⁻ γ	Completed
NA48/2	Q _q ≠0 U→e⁺e⁻	YES	$\pi^0 \rightarrow e^+ e^- \gamma$	Completed
P348 (CERN)	U→e⁺e⁻ or NONE		e⁻ on target	Proposal (201?)
PADME	NONE		e⁺ on target	Proposal (2016?)

Beam conditions

In the present study we assume that the BTF will be able to deliver

- 1E4 positrons of energy 550 MeV per bunch in 50 bunch/s over 1 year
- Total e⁺ on target being: 50*1E4*3.15E7 = 1.6E13 (we use 1E13)
- Beam energy spread ~1% (BTF can do much better)
- RMS of beam position 2mm and emittance 1mm*mrad
- Bunch duration 10 ns (can already go up to 40ns)

MC calorimeter performance

Missing mass resolution in agreement with toy MC using

- □ $\sigma(E)/E = 1.1\%/\sqrt{E} \oplus 0.4\%/E \oplus 1.2\%$ [NIM A 718 (2013) 107–109]
- Differences are ~ 10%
- Resolution is the result of combination of angular resolution energy resolution and angle energy correlation due to production

PADME active target

- Diamond 50µm thick target
 Most probably strip detector
- Active area 2x2cm²
- Position resolution ~2mm in both X and Y
- Sensitive from few particle to 10⁹ particle
- Real time beam imaging
- Time resolution below 1 ns
- Readout with QDC.
- R&D can start from CIVIDEC diamond mosaic detector

CIVIDEC

Features:		
Active area:	13 mm x 13 mm	-
Energy resolution:	35 keV FWHM	NEW
Particle rate:	1 MHz	
Detector:		
Type:	sCVD Diamond Mosaic-Detector	
Diamond substrates:	4.5 mm x 4.5 mm	
Thickness:	140 µm	
Electrode structure:	3x3 mosaic structure	
Metallization:	Au electrodes	

27/09/14

PADME spectrometer & Magnet

Conventional magnet with B=0.6 Tesla

- Generic cylindrical chamber filled with gas
 - Inner radius 20 cm outer radius 25 cm length 100 cm
 - 5 cylindrical layers of 1cm each
- Expected to measure track crossing position with 300μm resolution
- Used in the experiment to veto positron and to reconstruct mass of lepton pairs.

The electromagnetic calorimeter

Parameter	r: ρ	MP	X_0^*	R^*_M	dE^*/dx	λ_I^*	$\tau_{\rm decay}$	$\lambda_{ m max}$	$n^{ atural}$	Relative	Hygro-	d(LY)/dT
Units:	g/cm ³	°C	cm	cm	MeV/cm	cm	ns	nm		output	scopic:	%/°C‡
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	420^{s}	1.95	3.6^{s}	slight	-1.4
							6^{f}	310^{f}		1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^{s}	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

- Cylindrical shape: radius 15 cm, depth of 15-20 cm
 - Inner hole 4 cm radius
 - Active volume 9840 cm³ total of 656 crystals 1x1x15-20 cm³
- **D** Material LSO(Ce): high LY, high ρ , small X₀ and R_M, short τ_{decay}
- Expected performance:
 - □ $\sigma(E)/E = 1.1\%/\sqrt{E} \oplus 0.4\%/E \oplus 1.2\%$ superB calorimeter test at BTF [NIM A 718 (2013) 107–109]
 - **α** $\sigma(\theta) = 3 \text{ mm}/1.75 \text{ m} < 2 \text{ mrad}$
 - Angular acceptance 1.5-5 degrees