PADME project at DAFNE BTF

Venelin Kozhuharov^{1,2} & Mauro Raggi¹ ¹LNF-INFN ²University of Sofia

First BTF User Workshop

7 May 2014

- Motivation
- Present status
- PADME experiment
- Expected sensitivity
- Dark photon searches at BTF
- Conclusion

Motivation: New Physics

- Standard Model is complete: 2012 LHC Higgs boson
- Unknowns:
 - Matter-antimatter asymmetry
 - Dark matter
 - Dark Energy
- Still some places of discrepancies between theory and experiment
- The Standard Model is a low energy approximation of a more fundamental theory.

But which theory?

Direct search experiment

Positron excess: PAMELA, FERMI, AMS02

- No significant excess in antiprotons: pure secondary production
- ... and astronomy

Observation of 3.5keV line? arXiv:1402.2301 arXiv:1402.4119 Possible interpretation: arXiv:1404.2220

Hint for dark matter?

Dark matter annihilation through

- If Dark Matter is the explanation to the positron excess, then the mediator should be light (< 2*M_{proton})
- Coupling constant to DM could be arbitrary (even O(1))
- The Lagrangian term can arise through
 - fermions being charged (mili) under this new gauge symmetry ($q_f \rightarrow 0$ for some flavours)
 - Kinetic mixing between ordinary photon and DM one: $\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$
 - Using simply an effective description: $g'.q'_e = \varepsilon$, $\alpha' = \alpha * \varepsilon^2$

About 3 σ discrepancy between theory and experiment (3.6 σ , if taking into account only $e^+e^- \rightarrow$ hadrons)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Heavy/Dark photon/boson

- The most attractive explanation of the phenomena is the simplest one – with a single object
- If this is the U-boson, it should be sufficiently light – 10-100MeV
- Searches
 - Beam dump experiments
 - A'-strahlung production
 - Every observed event is signal
 - Fixed target
 - peaks in the e⁺e⁻ invariant mass spectrum
 - Meson decays
 - Peaks in $M_{e^+e^-}$ or $M_{\mu^+\mu^-}$

<u>Present limits: invisible searches</u>

- There is no published direct present limit in the U \rightarrow invisible decay from $a=\frac{g-2}{2}$
- The discrepancy is not in g_µ-2 itself, it's in the consistency of g_p & g_µ
- Alternative inputs should be used to extract information from $\textbf{g}_{\text{e}}: \alpha_{_{EM}}$

- Anomalous magnetic moment limits
 - $\alpha_{\rm EM}$ usually a determined from g_e -2 *input*
 - Used further to constrain g_{μ} -2
 - Dark photon contribution:

The invisible search removes any assumption apart from coupling to leptons!

Present status

Status: ongoing, planned, proposals

How to improve?

- Searching a U-boson in a kinematically constraint event and using full reconstruction
- Basic process: positron on a fixed target

$$e^+ + e^- \rightarrow \gamma + U \begin{cases} \gamma + E_{miss} & (invisible channel, U \rightarrow \chi \chi) \\ \gamma + e^+e^- & (visible channel, U \rightarrow e^+e^-) \end{cases}$$

• Normalizing to the concurrent process - annihilation

$$\frac{\sigma(e^+e^- \rightarrow \gamma U)}{\sigma(e^+e^- \rightarrow \gamma \gamma)} = \frac{N(\gamma U)}{N(\gamma \gamma)} * \frac{Acc(\gamma \gamma)}{Acc(\gamma U)} = \varepsilon^2 * \delta$$

- $N(\gamma U)$, $N(\gamma \gamma)$ number of registered events
- Acc(γ U), Acc($\gamma\gamma$) detection efficiency
- $\delta = \sigma(e^+e^- \rightarrow \gamma U)/\sigma(e^+e^- \rightarrow \gamma \gamma)$ at $\epsilon = 1 cross section enhancement factor$

Is it possible such a search to be conducted at BTF?

PADME experiment

Positron Annihilation into Dark Matter Experiment

- Small scale fixed target experiment
- Measuring both charged and neutral particles:
 - Spectrometer
 - Calorimeter
 - Beam profile

 e^+ Maximal beam energy [MeV]550Beam rate [particles/burst] 6.2×10^8 Number of bursts per second50Max. averaged current during a burst [mA]85Typical emittance (mm mrad)1.5Beam spot size (σ in mm)2.

- Variable beam energy
 - from ~250 MeV to E_{MAX}
- Variable beam intensity
- Possibility for single particle beam
 - However we need statistics...
- Both positron and electron beams
- Small beam energy spread
- Available immediately
- The accessible region is limited by the maximal beam energy
 - Around 23 MeV for 550 MeV e⁺ beam

- Electron is at rest
- Positron momentum is determined by the accelerator characteristics 1% resolution
- Basic contribution to the missing mass resolution reconstruction of the photon 4momentum
 - Interaction point inside the target beam transverse size is small, but the time stability is not sufficient
 - Cluster position in the calorimeter
 - Energy resolution of the calorimeter

Event reconstruction

- Clear 2 body correlation
- Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Best possible resolution on energy/angle measurement
 - Photon vetoing
 - Minimize the interaction remnants + vetoing

- 10 diamond strips of 2 mm x 50 mm with 25um thickness
- Time resolution: below 1ns
- Sensitivity: from few to 10⁹ particles
- QDC readout and bunch-by-bunch beam spot determination

Magnetic spectrometer

- 0.6 T magnetic field, conventional dipole magnet
- Gaseous detector with 1m length, 20cm radius (10cm from the beam direction)
 - 5 layer of triple GEMs
 - Planar or cylindrical
 - Position and momentum measurements of the charged tracks (vetoing)
 - Track time resolution: ~1ns
- Readout based on custom ASIC (possibly GASTONE?)

<u>Calorimeter</u>

Paramete Units:	r: ρ g/cm ³	MP ³ °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	$\operatorname{Relative}_{\operatorname{output}^{\dagger}}$	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	420^{s}	1.95	3.6^{s}	slight	-1.4
							6^{f}	310^{f}		1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^{s}	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce	e) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

- Cylindrical shape, Rin = 4cm, Rout = 15cm
- 656 LYSO crystals, 1 cm x 1cm x 15-20 cm
- Energy resolution:

$$\sigma E/E = \frac{1.1\%}{\sqrt{E}} \oplus \frac{0.4\%}{E} \oplus 1.2\%$$

- Angular acceptance: 1.5 5 degrees
 - resolution < 2mrad</p>
- Digitizer readout

Expected sensitivity

- 10⁴ positrons/burst
- Considering the statistical uncertainty of the expected background to set the limits

Dark photon prosects at BTF

conventional electron beam and U-strahlung: $e^{-}Z \rightarrow e^{-}ZU$

Conclusions

- BTF machine provides unique opportunity to study possible dark photon production in annihilation channel
- Small fixed target experiment to search for dark photons in the invisible channel proposed.
- Interesting parameter space could be covered, using $10^3 10^5 e^+$ /bunch.
- Preliminary studies have been initiated as a sidework activity
- Short time scale of the project
- PADME could turn BTF from a test beam facility into a fundamental physics machine
- PADME would profit from both energy and duty cycle upgrades of the BTF

Possible improvements

- Duty cycle upgrade:
 - Present: 50Hz * 10ns = 0.5*10⁻⁶
 - At 10 ns all the particles in the bunch are treated as belonging to the same event
 - At 40ns (100 ns) time resolution of LYSO
 & Spectrometer improves the veto
 - Improvement on the repetition of equal profit!
- Energy upgrade
 - Extend the access to M_u ~27 MeV
 - Improve the results in the range 20 23 MeV
- Bremsstrahlung production and visible/dump detection
 - Extend the mass region
 - Extend the ϵ^2 region to lower values due to higher U-boson boost
- Beam related background (i.e. accompanying spurious particles)
 - Difficult to access in the simulation, desired to be as minimal as possible

Resolution on missing mass squared