New projects on dark photon search

Venelin Kozhuharov

Mauro Raggi & Paolo Valente

LNF-INFN and SU “St. Kl. Ohridski”

28 May 2016

VULCANO Workshop 2016
Vulcano Island, Sicily, Italy
Overview

- Motivation
- Dark photon basics
- Searches in detectable final states
- Looking for the invisible
- Conclusions
Motivation: New Physics

- **Standard Model is complete: 2012 LHC - Higgs boson**
- Unknowns:
 - Matter-antimatter asymmetry
 - Dark matter
 - Dark Energy
- The Standard Model is a low energy approximation of a more fundamental theory.

But which theory?

- Despite the highest energy reach LHC did not provide any convincing evidence for new degrees of freedom … *yet?*

Where to look? How to proceed?

Most of those discrepancies originate from **Astrophysics and/or Cosmology**!
The smoking guns

Relatively calm and stable picture of the world

Recognize the dynamics only by looking at particular spots.
Direct search experiment

- DAMA/LIBRA results unexplained: 9.2σ
- Possible indication by other CoGeNT
- Is it possible to build a consistent picture?
- If the explanation is Dark Matter, it could be relative light: ~ 10 GeV
- Interaction with the nuclei through a mediator. Mass in the MeV range is OK
Astrophysics ...

- Positron excess: PAMELA, FERMI, AMS02
- Antiproton excess: AMS02

... and astronomy

Observation of 3.5keV line?

Possible interpretation: arXiv:1404.2220
About 3 \(\sigma \) discrepancy between theory and experiment (3.6 \(\sigma \), if taking into account only \(e^+e^- \rightarrow \) hadrons)

\[
d_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_\mu),
\]

where \(F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2 z] \, dz \). For values of \(\varepsilon \sim 1-2 \cdot 10^{-3} \) and \(m_V \sim 10-100\) MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon \(g-2 \) discrepancy. Searches for the dark
Anomalies in nuclear transitions

- Anomalous angular and invariant mass distributions in the IPC process
- Several indications in the last few decades
- New experiment at ATOMKI
- E-ΔE plastic scintillator detector, in the plane transversal to the beam
- The anomaly observed at ~17 MeV – cannot be interpreted within nuclear physics so far...
New gauge bosons

- The effective interaction that can be studied is
 \[\mathcal{L} \sim g'q' \bar{\Psi} (\gamma_\mu + \alpha'_a \gamma_\mu \gamma^5) \Psi A'^\mu , \text{ usually } \alpha'_a = 0 \]
 - \(q_f \to 0 \) for some flavours

- Such textbook scenario could address the \((g_\mu - 2)\) discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General \(U'(1) \) and kinetic mixing with \(B \) (\(A' \), \(Z' \))
 - Universal coupling proportional to the \(q_{em} \)
 - Just single additional parameter – \(\varepsilon \)
 - Leptophilic/leptophobic dark photon

- Other messenger types possible (neutrino, higgs, ALP, see T. Spadaro talk)
- Rich dark sector?
Dark photon phenomenology

- Production mechanisms
 - Meson decays
 - Bremsstrahlung
 - Annihilation

- Decays
 - To SM model particles if nothing in the DS lighter than A'
 - $A' \rightarrow \gamma\gamma$, if $M(A') < 2m_\gamma$, small width, A' quasi stable
 - To DS particles with $\text{Br}(A' \rightarrow \chi\chi) = 1$,

Dark matter annihilation
The physics case attracted a large attention recently
Visible DP searches in BoT

- Beam dump experiments: A'-strahlung production
- Fixed target: peaks in the e^+e^- invariant mass spectrum
- Meson decays: Peaks in $M_{e^+e^-}$ or $M_{\mu^+\mu^-}$

28.05.2016
Venelin Kozhuharov, VULCANO Workshop 2016
Invisible A' searches

- Really model independent addressing of the dark gauge boson parameters is difficult
- Four parameter space to be studied: $M_{A'}$, g', g_D, M_χ
 - g' could also be flavour dependent
Visible dark photons

A' production vertex

target or particle decay

- HPS
- MESA

Spectrometers looking for A':
 - produced in a thin target
 - decaying to leptons
HPS experiment

- Electron beam (2.2 and 6.6 GeV, up to 500 nA) on a thin tungsten target (0.25% X_0)
- A'-strahlung production
- Decay channel – $A' \rightarrow e^+e^-$
- Silicon vertex tracker (1 m long) inside dipole magnet, 6 layers (dual sensor)
 - Particle momenta, Vertices
 - 6.4 μm hit resolution, $\sigma(t) = 2.5$ ns
- Lead tungstate electromagnetic calorimeter

Fast energy measurement
Trigger definition
HPS sensitivity

Timothy Nelson, Dark Sectors Workshop, 28-30 Apr., SLAC

Prompt decay
- bump hunt
- ... background

Displaced vertex
- lower background
- ... lower yield

Venelin Kozhuharov, VULCANO Workshop 2016

28.05.2016
Dark photon @ Mainz

- Tradition in dark photon physics - A1 @ MAMI
- New accelerator: MESA (Mainz Energy-recovering Superconducting Accelerator)
 - Energy up to 155 MeV
 - Current > 1 mA

Planned commissioning: 2020

Part of PRISMA cluster of excellence
The MAinz Gas Internal EXperiment

- Double arm high resolution spectrometers
 - Aim for $\Delta p/p \sim 10^{-4}$
 - Acceptance +/- 50 mrad

- Gas jet target
 - Supersonic gas /cluster jet
 - High gas density (10^{19}/cm2)
 - O(mm) target length
 - Windowless
 - Ready in 2016
MAGIX @ MESA

- Two position detectors
 - Focal plane
 - Direction measurement
- GEM detectors considered
 - 0.7% X0
 - High rate capability
 - 2D strip readout
 - Should aim for 50μm coordinate resolution

Xe gas target
6 months data taking
preliminary
Visible dark photons status

• HPS
 – 2015 – engineering run @1.06 GeV
 • Results in the next few months
 – 2016 – physics data quality @ 2.3 GeV
 • Results expected in ~1 year
• MAGIX
 – Accelerator commissioning – 2020
• Address short and medium living DP
• Many other proposals and techniques are being tested
 – See T. Spadaro talk
Invisible dark photons

• Addressing the missing mass
 – PADME@Frascati, VEPP3@Novosibirsk, MMAPS@Cornell
 – Positron beam on a thin target
 – Annihilation production of dark photons

• Missing energy
 – NA64: leakage of energy to the dark sector in high energy shower development

• Dark matter scattering
 – BDX
Missing mass technique

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, E_γ, ϕ_γ

$$M_{\text{miss}}^2 = (p_{\text{pos}} + p_{\text{elec}} - p_\gamma)^2$$

Cross section enhancement with the approach of the production threshold
Measurement strategy

- **Background suppression**

<table>
<thead>
<tr>
<th>Background process</th>
<th>Cross section e@550 MeV beam</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>e+e- → γγ</td>
<td>1.55 mb</td>
<td></td>
</tr>
<tr>
<td>e^+ + N → e^+ N γ</td>
<td>4000 mb</td>
<td>E_γ > 1MeV, C</td>
</tr>
<tr>
<td>e^+e^- → γγγ</td>
<td>0.16 mb</td>
<td>CalcHEP, E_γ > 1MeV</td>
</tr>
<tr>
<td>e^+e^- → e^+e^-γ</td>
<td>180 mb</td>
<td>CalcHEP, E_γ > 1MeV</td>
</tr>
</tbody>
</table>

Venelin Kozhuharov, VULCANO Workshop 2016
Measurement strategy

- Background suppression

Venelin Kozhuharov, VULCANO Workshop 2016
28.05.2016
PADME experiment

Positron Annihilation into Dark Matter Experiment

- Small scale fixed target experiment
- Measuring both charged and neutral particles:
 - Charged particles detector
 - Calorimeter
 - Beam profile
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parasitic mode</th>
<th>Dedicated mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With target</td>
<td>Without target</td>
</tr>
<tr>
<td>Particle species</td>
<td>e⁺ or e⁻</td>
<td>e⁺ or e⁻</td>
</tr>
<tr>
<td></td>
<td>Selectable by user</td>
<td>Depending on DAFNE mode</td>
</tr>
<tr>
<td>Energy (MeV)</td>
<td>25–500</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Depending on DAFNE mode</td>
<td>25–700 (e⁻/e⁺)</td>
</tr>
<tr>
<td>Energy spread</td>
<td>1% at 500 MeV</td>
<td>0.5%</td>
</tr>
<tr>
<td>Rep. rate (Hz)</td>
<td>Variable between 10 and 49</td>
<td>1–49</td>
</tr>
<tr>
<td></td>
<td>Depending on DAFNE mode</td>
<td>1–49</td>
</tr>
<tr>
<td>Pulse duration (ns)</td>
<td>10</td>
<td>1.5–40</td>
</tr>
<tr>
<td>Intensity (particles/bunch)</td>
<td>1–10⁻⁵ Depending on the energy</td>
<td>10⁻⁷–1.5 10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>10⁻⁷–1.5 10⁻⁴</td>
<td>10⁻⁷–1.5 10⁻⁴</td>
</tr>
<tr>
<td>Max. average flux</td>
<td>3.125 10⁻⁷ particles/s</td>
<td></td>
</tr>
<tr>
<td>Spot size (mm)</td>
<td>0.5–25 (y) × 0.6–55 (x)</td>
<td></td>
</tr>
<tr>
<td>Divergence (mrad)</td>
<td>1–1.5</td>
<td></td>
</tr>
</tbody>
</table>
Diamond target

300 μm, graphitized strips
3mm long, 100 μm width

Polycrystalline diamonds

- 100 mm thickness:
- 16x1mm² strip and X-Y readout in a single detector
- Readout strips are graphitized by using a laser to avoid metallization
- PADME prototype 20×20mm² produced and tested in October 2015
• BGO crystals available from L3 experiment
• Crystal geometry is close to 2 x 2 cm front face
 – Cut the crystals in 1 x 1 cm and place them at 2 m
 • Requires cutting of the existing crystals, but the quantity is identified and available
 – Place the calorimeter at 3 m distance and keep the dimensions 2x2 cm
 • Agreement on the usage of extra crystals
Charged particle detector
- Plastic scintillator detector
- SiPM based readout

- CERN spare magnet: MBP-S
- Refurbished from CERN and transported to LNF
- Usage of the DAΦNE PS: 400A
Sensitivity estimation

• Assumptions:
 – 40 ns bunch length
 – 49 Hz repetition
 – 6000 e⁺/bunch

• Accessible regions:
 – E=550MeV: \(M_{A'} < 23.7 \) MeV

• Improvements possible
 – Increase beam energy
 – Extend the bunch length
MMAPS

- Approach similar to PADME: **Missing Mass A-Prime Search**
 - $E_{\text{beam}} = 1.8 - 5.3$ GeV, $I_{\text{beam}} \sim 2.3$ nA at target,
 - ~millisecond spills @ 60Hz
 - pulse structure: 168ns
MMAPS design and sensitivity

- Charged particle vetoes in front of the calorimeter
- CsI(Tl) crystal calorimeter (from CLEO), PMTs instead of photodiodes (time properties)
- Issues with overlap @ maximal luminosity: good double pulse separation necessary

Extend the accessible region up to $M_{A'} = 74$ MeV
• 500 MeV storage ring @ Novosibirsk

Proposed to construct a ByPass, allowing to utilize available space for a crystal calorimeter and shielding

Operating in parallel with the ongoing VEPP-3 activities
• CLEO CsI crystals
 – 624 crystals are assembled in a “ring”
 – placed at a distance of 8 m from the target

• CLEO measurements with 180 MeV positrons:
 – energy resolution $\sigma_E = 3.8\%$
 – spatial resolution $\sigma_x = 12$ mm \Rightarrow angular resolution: $\sigma_\theta = 0.09^\circ$

• Possible operation in 3-4 years with the by-pass beam line
Missing mass searches status

<table>
<thead>
<tr>
<th></th>
<th>PADME</th>
<th>MMAPS</th>
<th>VEPP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place</td>
<td>LNF</td>
<td>Cornell</td>
<td>Novosibirsk</td>
</tr>
<tr>
<td>Beam energy</td>
<td>550 MeV</td>
<td>Up to 5.3 GeV</td>
<td>500 MeV</td>
</tr>
<tr>
<td>$M_{A'}$ limit</td>
<td>23 MeV</td>
<td>74 MeV</td>
<td>22 MeV</td>
</tr>
<tr>
<td>Target thickness</td>
<td>2×10^{22} e⁻/cm²</td>
<td>$O(2 \times 10^{23})$ e⁻/cm²</td>
<td>5×10^{15} e⁻/cm²</td>
</tr>
<tr>
<td>Beam intensity</td>
<td>8×10^{-11} mA</td>
<td>2.3×10^{-6} mA</td>
<td>30 mA</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \gamma \gamma$ rate [s⁻¹]</td>
<td>15</td>
<td>2.2×10^6</td>
<td>1.5×10^6</td>
</tr>
<tr>
<td>ε^2 limit (plateau)</td>
<td>10^{-6} (10^{-7} SES)$</td>
<td>$10^{-6} - 10^{-7}$</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>Time scale</td>
<td>2017 - 2018</td>
<td>?</td>
<td>2020 (ByPass)</td>
</tr>
<tr>
<td>Status</td>
<td>Approved</td>
<td>Not funded by NSF</td>
<td>Proposal</td>
</tr>
</tbody>
</table>
Missing energy technique: NA64

- Location: SPS (CERN)
- Tagged electrons
 - clean mono-energetic electron beam of 100 GeV
 - Micromegas tracker and BGO calorimeter (synchrotron)
- Signature:
 - 100 GeV e^- track.
 - < 50 GeV EM shower in ECAL
 - no energy in Veto + HCAL

Venelin Kozhuharov, VULCANO Workshop 2016
NA64 experiment

- Interesting technique
- In case of unexpected background and/or signal – not possible to disentangle
 - Can we describe particle showers in matter at 10^{-9} level?
 - NA64 Could test our understanding of the shower simulation
 - complementarity with the missing mass strategy
- Approved as an experiment at SPS in 2016
 - 2 + 4 weeks of data taking (tests, commissioning) in 2016, operation in 2017
DM scattering: BDX

Beam Dump eXperiment

- **χ production**
 - High-energy, high-intensity e^- beam impinging on a dump
 - χ particles pair-produced radiatively, through A'

- **χ detection**
 - Detector placed behind the dump, $O(10m)$
 - χ scattering trough A'
 - Different signals depending on the interaction (e^--elastic, p quasi-elastic,..)

Number of events:

$$\frac{\alpha_D \epsilon^4}{M_A^4}$$

- Lol submitted to JLab PAC (2014) - positive feedback
- Preparation of a full Proposal ongoing
- Interesting opportunities for a phase-1 run @ other facilities
DM scattering: BDX

Beam Dump eXperiment

- χ production
 - High-energy, high-intensity e^- beam impinging on a dump
 - χ particles pair-produced radiatively, through A'

- χ detection
 - Detector placed behind the dump, $O(10m)$
 - χ scattering through A'
 - Different signals depending on the interaction (e^--elastic, p quasi-elastic,)

Number of events: $\frac{\alpha_D \epsilon^4}{M_A^4}$

- Lol submitted to JLab PAC (2014) - positive feedback
- Preparation of a full Proposal ongoing
- Interesting opportunities for a phase-1 run @ other facilities
Invisible perspective

- Construction of PADME
 - Aim for first tests in 2017
 - 2018: first results
- Long term
 - Improvements possible
 - VEPP3 setup
 - Increase of beam energy
 - Synergy between the labs

PADME 40 ns bunch
PADME 160 ns bunch
PADME 480 ns bunch

PADME 40 ns bunch
Conclusions

• Increased interest recently

• Many activities undergoing and many new projects are on the scene

• Covering multi-probes for Dark Photon
 – Visible in bremsstrahlung
 – Visible in meson decays
 – Invisible: missing mass, missing energy, DM scattering

• Interesting results expected before 2020

• Stay tuned